
A Guided Tour to Approximate String Matching

GONZALO NAVARRO
University of Chile

We survey the current techniques to cope with the problem of string matching that
allows errors. This is becoming a more and more relevant issue for many fast growing
areas such as information retrieval and computational biology. We focus on online
searching and mostly on edit distance, explaining the problem and its relevance, its
statistical behavior, its history and current developments, and the central ideas of the
algorithms and their complexities. We present a number of experiments to compare the
performance of the different algorithms and show which are the best choices. We
conclude with some directions for future work and open problems.

Categories and Subject Descriptors: F.2.2 [Analysis of algorithms and problem
complexity]: Nonnumerical algorithms and problems—Pattern matching,
Computations on discrete structures; H.3.3 [Information storage and retrieval]:
Information search and retrieval—Search process

General Terms: Algorithms

Additional Key Words and Phrases: Edit distance, Levenshtein distance, online string
matching, text searching allowing errors

1. INTRODUCTION

This work focuses on the problem of string
matching that allows errors, also called
approximate string matching. The general
goal is to perform string matching of a pat-
tern in a text where one or both of them
have suffered some kind of (undesirable)
corruption. Some examples are recovering
the original signals after their transmis-
sion over noisy channels, finding DNA sub-
sequences after possible mutations, and
text searching where there are typing or
spelling errors.

Partially supported by Fondecyt grant 1-990627.
Author’s address: Department of Computer Science, University of Chile, Blanco Erncalada 2120, Santiago,
Chile, e-mail: gnavarro@dec.uchile.cl.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or direct commercial advantage and
that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works, requires prior specific permission and/or a fee. Permissions may
be requested from Publications Dept, ACM Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c©2001 ACM 0360-0300/01/0300-0031 $5.00

The problem, in its most general form,
is to find a text where a text given pat-
tern occurs, allowing a limited number of
“errors” in the matches. Each application
uses a different error model, which defines
how different two strings are. The idea for
this “distance” between strings is to make
it small when one of the strings is likely to
be an erroneous variant of the other under
the error model in use.

The goal of this survey is to present
an overview of the state of the art in ap-
proximate string matching. We focus on
online searching (that is, when the text

ACM Computing Surveys, Vol. 33, No. 1, March 2001, pp. 31–88.

32 G. Navarro

cannot be preprocessed to build an in-
dex on it), explaining the problem and its
relevance, its statistical behavior, its his-
tory and current developments, and the
central ideas of the algorithms and their
complexities. We also consider some vari-
ants of the problem. We present a num-
ber of experiments to compare the per-
formance of the different algorithms and
show the best choices. We conclude with
some directions for future work and open
problems.

Unfortunately, the algorithmic nature of
the problem strongly depends on the type
of “errors” considered, and the solutions
range from linear time to NP-complete.
The scope of our subject is so broad that we
are forced to narrow our focus on a subset
of the possible error models. We consider
only those defined in terms of replacing
some substrings by others at varying costs.
In this light, the problem becomes mini-
mizing the total cost to transform the pat-
tern and its occurrence in text to make
them equal, and reporting the text posi-
tions where this cost is low enough.

One of the best studied cases of this er-
ror model is the so-called edit distance,
which allows us to delete, insert and sub-
stitute simple characters (with a different
one) in both strings. If the different oper-
ations have different costs or the costs de-
pend on the characters involved, we speak
of general edit distance. Otherwise, if all
the operations cost 1, we speak of simple
edit distance or just edit distance (ed). In
this last case we simply seek for the min-
imum number of insertions, deletions and
substitutions to make both strings equal.
For instance ed ("survey,""surgery") =
2. The edit distance has received a lot
of attention because its generalized ver-
sion is powerful enough for a wide range
of applications. Despite the fact that
most existing algorithms concentrate on
the simple edit distance, many of them
can be easily adapted to the generalized
edit distance, and we pay attention to
this issue throughout this work. More-
over, the few algorithms that exist for
the general error model that we con-
sider are generalizations of edit distance
algorithms.

On the other hand, most of the algo-
rithms designed for the edit distance are
easily specialized to other cases of inter-
est. For instance, by allowing only in-
sertions and deletions at cost 1, we can
compute the longest common subsequence
(LCS) between two strings. Another sim-
plification that has received a lot of atten-
tion is the variant that allows only substi-
tutions (Hamming distance).

An extension of the edit distance en-
riches it with transpositions (i.e. a sub-
stitution of the form ab → ba at cost 1).
Transpositions are very important in text
searching applications because they are
typical typing errors, but few algorithms
exist to handle them. However, many algo-
rithms for edit distance can be easily ex-
tended to include transpositions, and we
keep track of this fact in this work.

Since the edit distance is by far the
best studied case, this survey focuses ba-
sically on the simple edit distance. How-
ever, we also pay attention to extensions
such as generalized edit distance, trans-
positions and general substring substitu-
tion, as well as to simplifications such as
LCS and Hamming distance. In addition,
we also pay attention to some extensions
of the type of pattern to search: when the
algorithms allow it, we mention the possi-
bility of searching some extended patterns
and regular expressions allowing errors.
We now point out what we are not cover-
ing in this work.

—First, we do not cover other distance
functions that do not fit the model of
substring substitution. This is because
they are too different from our focus and
the paper would lose cohesion. Some
of these are: Hamming distance (short
survey in [Navarro 1998]), reversals
[Kececioglu and Sankoff 1995] (which
allows reversing substrings), block dis-
tance [Tichy 1984; Ehrenfeucht and
Haussler 1988; Ukkonen 1992; Lopresti
and Tomkins 1997] (which allows rear-
ranging and permuting the substrings),
q-gram distance [Ukkonen 1992] (based
on finding common substrings of fixed
length q), allowing swaps [Amir et al.
1997b; Lee et al. 1997], etc. Hamming

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

A Guided Tour to Approximate String Matching 33

distance, despite being a simplification
of the edit distance, is not covered be-
cause specialized algorithms for it exist
that go beyond the simplification of an
existing algorithm for edit distance.

—Second, we consider pattern matching
over sequences of symbols, and at most
generalize the pattern to a regular ex-
pression. Extensions such as approx-
imate searching in multidimensional
texts (short survey in [Navarro and
Baeza-Yates 1999a]), in graphs [Amir
et al. 1997a; Navarro 2000a] or multi-
pattern approximate searching [Muth
and Manber 1996; Baeza-Yates and
Navarro 1997; Navarro 1997a; Baeza-
Yates and Navarro 1998] are not con-
sidered. None of these areas is very de-
veloped and the algorithms should be
easy to grasp once approximate pattern
matching under the simple model is well
understood. Many existing algorithms
for these problems borrow from those we
present here.

—Third, we leave aside nonstandard al-
gorithms, such as approximate,1 prob-
abilistic or parallel algorithms [Tarhio
and Ukkonen 1988; Karloff 1993;
Atallah et al. 1993; Altschul et al. 1990;
Lipton and Lopresti 1985; Landau and
Vishkin 1989].

—Finally, an important area that we leave
aside in this survey is indexed search-
ing, i.e. the process of building a per-
sistent data structure (an index) on the
text to speed up the search later. Typical
reasons that prevent keeping indices on
the text are: extra space requirements
(as the indices for approximate search-
ing tend to take many times the text
size), volatility of the text (as building
the indices is quite costly and needs to

1 Please do not confuse an approximate algorithm
(which delivers a suboptimal solution with some sub-
optimality guarantees) with an algorithm for approx-
imate string matching. Indeed approximate string
matching algorithms can be regarded as approxi-
mation algorithms for exact string matching (where
the maximum distance gives the guarantee of opti-
mality), but in this case it is harder to find the ap-
proximate matches, and of course the motivation is
different.

be amortized over many searches) and
simply inadequacy (as the field of in-
dexed approximate string matching is
quite immature and the speedup that
the indices provide is not always sat-
isfactory). Indexed approximate search-
ing is a difficult problem, and the area
is quite new and active [Jokinen and
Ukkonen 1991; Gonnet 1992; Ukkonen
1993; Myers 1994a; Holsti and Sutinen
1994; Manber and Wu 1994; Cobbs
1995; Sutinen and Tarhio 1996; Araújo
et al. 1997; Navarro and Baeza-Yates
1999b; Baeza-Yates and Navarro 2000;
Navarro et al. 2000]. The problem is
very important because the texts in
some applications are so large that
no online algorithm can provide ade-
quate performance. However, virtually
all the indexed algorithms are strongly
based on online algorithms, and there-
fore understanding and improving the
current online solutions is of interest
for indexed approximate searching as
well.

These issues have been put aside to keep
a reasonable scope in the present work.
They certainly deserve separate surveys.
Our goal in this survey is to explain the
basic tools of approximate string match-
ing, as many of the extensions we are
leaving aside are built on the basic algo-
rithms designed for online approximate
string matching.

This work is organized as follows. In
Section 2 we present in detail some of the
most important application areas for ap-
proximate string matching. In Section 3
we formally introduce the problem and the
basic concepts necessary to follow the rest
of the paper. In Section 4 we show some
analytical and empirical results about the
statistical behavior of the problem.

Sections 5–8 cover all the work of inter-
est we could trace on approximate string
matching under the edit distance. We
divided it in four sections that correspond
to different approaches to the problem:
dynamic programming, automata, bit-
parallelism, and filtering algorithms.
Each section is presented as a historical
tour, so that we do not only explain the

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

34 G. Navarro

work done but also show how it was
developed.

Section 9 presents experimental results
comparing the most efficient algorithms.
Finally, we give our conclusions and dis-
cuss open questions and future work in
Section 10.

There exist other surveys on approxi-
mate string matching, which are however
too old for this fast moving area [Hall
and Dowling 1980; Sankoff and Kruskal
1983; Apostolico and Galil 1985; Galil and
Giancarlo 1988; Jokinen et al. 1996] (the
last one was in its definitive form in 1991).
So all previous surveys lack coverage of
the latest developments. Our aim is to
provide a long awaited update. This work
is partially based in Navarro [1998], but
the coverage of previous work is much
more detailed here. The subject is also
covered, albeit with less depth, in some
textbooks on algorithms [Crochemore and
Rytter 1994; Baeza-Yates and Ribeiro-
Neto 1999].

2. MAIN APPLICATION AREAS

The first references to this problem we
could trace are from the sixties and sev-
enties, where the problem appeared in a
number of different fields. In those times,
the main motivation for this kind of search
came from computational biology, signal
processing, and text retrieval. These are
still the largest application areas, and we
cover each one here. See also [Sankoff and
Kruskal 1983], which has a lot of informa-
tion on the birth of this subject.

2.1 Computational Biology

DNA and protein sequences can be seen
as long texts over specific alphabets (e.g.
{A,C,G,T} in DNA). Those sequences rep-
resent the genetic code of living beings.
Searching specific sequences over those
texts appeared as a fundamental opera-
tion for problems such as assembling the
DNA chain from the pieces obtained by the
experiments, looking for given features in
DNA chains, or determining how different
two genetic sequences are. This was mod-
eled as searching for given “patterns” in
a “text.” However, exact searching was of

little use for this application, since the pat-
terns rarely matched the text exactly: the
experimental measures have errors of dif-
ferent kinds and even the correct chains
may have small differences, some of them
significant due to mutations and evolu-
tionary alterations and others unimpor-
tant. Finding DNA chains very similar to
those sought represent significant results
as well. Moreover, establishing how differ-
ent two sequences are is important to re-
construct the tree of the evolution (phylo-
genetic trees). All these problems required
a concept of “similarity,” as well as an al-
gorithm to compute it.

This gave a motivation to “search allow-
ing errors.” The errors were those opera-
tions that biologists knew were common
in genetic sequences. The “distance” be-
tween two sequences was defined as the
minimum (i.e. more likely) sequence of op-
erations to transform one into the other.
With regard to likelihood, the operations
were assigned a “cost,” such that the more
likely operations were cheaper. The goal
was then to minimize the total cost.

Computational biology has since then
evolved and developed a lot, with a special
push in recent years due to the “genome”
projects that aim at the complete decoding
of the DNA and its potential applications.
There are other, more exotic, problems
such as structure matching or searching
for unknown patterns. Even the simple
problem where the pattern is known is
very difficult under some distance func-
tions (e.g. reversals).

Some good references for the applica-
tions of approximate pattern matching to
computational biology are Sellers [1974],
Needleman and Wunsch [1970], Sankoff
and Kruskal [1983], Altschul et al. [1990],
Myers [1991, 1994b], Waterman [1995],
Yap et al. [1996], and Gusfield [1997].

2.2 Signal Processing

Another early motivation came from sig-
nal processing. One of the largest areas
deals with speech recognition, where the
general problem is to determine, given
an audio signal, a textual message which
is being transmitted. Even simplified

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

A Guided Tour to Approximate String Matching 35

problems such as discerning a word from a
small set of alternatives is complex, since
parts of the the signal may be compressed
in time, parts of the speech may not be pro-
nounced, etc. A perfect match is practically
impossible.

Another problem is error correction. The
physical transmission of signals is error-
prone. To ensure correct transmission over
a physical channel, it is necessary to be
able to recover the correct message after
a possible modification (error) introduced
during the transmission. The probability
of such errors is obtained from the sig-
nal processing theory and used to assign
a cost to them. In this case we may not
even know what we are searching for, we
just want a text which is correct (accord-
ing to the error correcting code used) and
closest to the received message. Although
this area has not developed much with
respect to approximate searching, it has
generated the most important measure
of similarity, known as the Levenshtein
distance [Levenshtein 1965; 1966] (also
called “edit distance”).

Signal processing is a very active area
today. The rapidly evolving field of multi-
media databases demands the ability to
search by content in image, audio and
video data, which are potential applica-
tions for approximate string matching. We
expect in the next years a lot of pres-
sure on nonwritten human-machine com-
munication, which involves speech recog-
nition. Strong error correcting codes are
also sought, given the current interest in
wireless networks, as the air is a low qual-
ity transmission medium.

Good references for the relations of
approximate pattern matching with sig-
nal processing are Levenshtein [1965],
Vintsyuk [1968], and Dixon and Martin
[1979].

2.3 Text Retrieval

The problem of correcting misspelled
words in written text is rather old, per-
haps the oldest potential application for
approximate string matching. We could
find references from the twenties [Masters
1927], and perhaps there are older ones.

Since the sixties, approximate string
matching is one of the most popular tools
to deal with this problem. For instance,
80% of these errors are corrected allowing
just one insertion, deletion, substitution,
or transposition [Damerau 1964].

There are many areas where this prob-
lem appears, and Information Retrieval
(IR) is one of the most demanding. IR is
about finding the relevant information in
a large text collection, and string match-
ing is one of its basic tools.

However, classical string matching is
normally not enough, because the text col-
lections are becoming larger (e.g. the Web
text has surpassed 6 terabytes [Lawrence
and Giles 1999]), more heterogeneous (dif-
ferent languages, for instance), and more
error prone. Many are so large and grow
so fast that it is impossible to control their
quality (e.g. in the Web). A word which is
entered incorrectly in the database can-
not be retrieved anymore. Moreover, the
pattern itself may have errors, for in-
stance in cross-lingual scenarios where a
foreign name is incorrectly spelled, or in
old texts that use outdated versions of the
language.

For instance, text collections digitalized
via optical character recognition (OCR)
contain a nonnegligible percentage of er-
rors (7–16%). The same happens with
typing (1–3.2%) and spelling (1.5–2.5%)
errors. Experiments for typing Dutch sur-
names (by the Dutch) reached 38% of
spelling errors. All these percentages were
obtained from Kukich [1992]. Our own ex-
periments with the name “Levenshtein” in
Altavista gave more than 30% of errors al-
lowing just one deletion or transposition.

Nowadays, there is virtually no text re-
trieval product that does not allow some
extended search facility to recover from er-
rors in the text or pattern. Other text pro-
cessing applications are spelling checkers,
natural language interfaces, command
language interfaces, computer aided tutor-
ing and language learning, to name a few.

A very recent extension which became
possible thanks to word-oriented text com-
pression methods is the possibility to per-
form approximate string matching at the
word level [Navarro et al. 2000]. That

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

36 G. Navarro

is, the user supplies a phrase to search
and the system searches the text positions
where the phrase appears with a limited
number of word insertions, deletions and
substitutions. It is also possible to disre-
gard the order of the words in the phrases.
This allows the query to survive from dif-
ferent wordings of the same idea, which
extends the applications of approximate
pattern matching well beyond the recov-
ery of syntactic mistakes.

Good references about the relation of
approximate string matching and infor-
mation retrieval are Wagner and Fisher
[1974], Lowrance and Wagner [1975],
Nesbit [1986], Owolabi and McGregor
[1988], Kukich [1992], Zobel and Dart
[1996], French et al. [1997], and Baeza-
Yates and Ribeiro-Neto [1999].

2.4 Other Areas

The number of applications for approx-
imate string matching grows every day.
We have found solutions to the most
diverse problems based on approximate
string matching, for instance handwriting
recognition [Lopresti and Tomkins 1994],
virus and intrusion detection [Kumar
and Spaffors 1994], image compression
[Luczak and Szpankowski 1997], data
mining [Das et al. 1997], pattern recogni-
tion [González and Thomason 1978], op-
tical character recognition [Elliman and
Lancaster 1990], file comparison [Heckel
1978], and screen updating [Gosling
1991], to name a few. Many more ap-
plications are mentioned in Sankoff and
Kruskal [1983] and Kukich [1992].

3. BASIC CONCEPTS

We present in this section the important
concepts needed to understand all the de-
velopment that follows. Basic knowledge
of the design and analysis of algorithms
and data structures, basic text algorithms,
and formal languages is assumed. If this
is not the case we refer the reader to good
books on these subjects, such as Aho et al.
[1974], Cormen et al. [1990], Knuth [1973]
(for algorithms), Gonnet and Baeza-Yates
[1991], Crochemore and Rytter [1994],

Apostolico and Galil [1997] (for text algo-
rithms), and Hopcroft and Ullman [1979]
(for formal languages).

We start with some formal definitions
related to the problem. Then we cover
some data structures not widely known
which are relevant for this survey (they
are also explained in Gonnet and Baeza-
Yates [1991] and Crochemore and Rytter
[1994]). Finally, we make some comments
about the tour itself.

3.1 Approximate String Matching

In the discussion that follows, we use s,
x, y , z, v, w to represent arbitrary strings,
and a, b, c, . . . to represent letters. Writing
a sequence of strings and/or letters repre-
sents their concatenation. We assume that
concepts such as prefix, suffix and sub-
string are known. For any string s ∈ 6∗
we denote its length as |s|. We also de-
note si the ith character of s, for an inte-
ger i ∈ {1..|s|}. We denote si.. j = sisi+1 · · · sj
(which is the empty string if i> j). The
empty string is denoted as ε.

In the Introduction we have defined the
problem of approximate string matching
as that of finding the text positions that
match a pattern with up to k errors. We
now give a more formal definition.

Let 6 be a finite2 alphabet of size
|6| = σ .
Let T ∈ 6∗ be a text of length n = |T |.
Let P ∈ 6∗ be a pattern of length
m = |P |.
Let k ∈ R be the maximum error al-
lowed.
Let d : 6∗ × 6∗ → R be a distance
function.
The problem is: given T , P , k and d (·),
return the set of all the text positions
j such that there exists i such that
d (P, Ti.. j) ≤ k.

2 However, many algorithms can be adapted to infi-
nite alphabets with an extra O(log m) factor in their
cost. This is because the pattern can have at most
m different letters and all the rest can be consid-
ered equal for our purposes. A table of size σ could
be replaced by a search structure over at most m+ 1
different letters.

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

A Guided Tour to Approximate String Matching 37

Note that endpoints of occurrences are
reported to ensure that the output is of lin-
ear size. By reversing all strings we can
obtain start points.

In this work we restrict our attention to
a subset of the possible distance functions.
We consider only those defined in the fol-
lowing form:

The distance d (x, y) between two strings
x and y is the minimal cost of a sequence
of operations that transform x into y (and
∞ if no such sequence exists). The cost of
a sequence of operations is the sum of the
costs of the individual operations. The op-
erations are a finite set of rules of the form
δ(z, w) = t, where z and w are different
strings and t is a nonnegative real num-
ber. Once the operation has converted a
substring z into w, no further operations
can be done on w.

Note especially the restriction that for-
bids acting many times over the same
string. Freeing the definition from this
condition would allow any rewriting sys-
tem to be represented, and therefore
determining the distance between two
strings would not be computable in
general.

If for each operation of the form
δ(z, w) there exists the respective opera-
tion δ(w, z) at the same cost, then the dis-
tance is symmetric (i.e. d (x, y) = d (y , x)).
Note also that d (x, y) ≥ 0 for all strings x
and y , that d (x, x) = 0, and that it always
holds d (x, z) ≤ d (x, y)+d (y , z). Hence,
if the distance is symmetric, the space of
strings forms a metric space.

General substring substitution has been
used to correct phonetic errors [Zobel and
Dart 1996]. In most applications, however,
the set of possible operations is restricted
to:

—Insertion: δ(ε, a), i.e. inserting the letter
a.

—Deletion: δ(a, ε), i.e. deleting the letter
a.

—Substitution or Replacement: δ(a, b) for
a 6= b, i.e. substituting a by b.

—Transposition: δ(ab, ba) for a 6= b, i.e.
swap the adjacent letters a and b.

We are now in position to define the
most commonly used distance functions
(although there are many others).

—Levenshtein or edit distance
[Levenshtein 1965]: allows inser-
tions, deletions and substitutions. In
the simplified definition, all the oper-
ations cost 1. This can be rephrased
as “the minimal number of insertions,
deletions and substitutions to make
two strings equal.” In the literature the
search problem in many cases is called
“string matching with k differences.”
The distance is symmetric, and it holds
0 ≤ d (x, y) ≤ max(|x|, | y |).

—Hamming distance [Sankoff and
Kruskal 1983]: allows only substitu-
tions, which cost 1 in the simplified
definition. In the literature the search
problem in many cases is called “string
matching with k mismatches.” The
distance is symmetric, and it is finite
whenever |x| = | y |. In this case it holds
0 ≤ d (x, y) ≤ |x|.

—Episode distance [Das et al. 1997]:
allows only insertions, which cost 1.
In the literature the search problem in
many cases is called “episode match-
ing,” since it models the case where
a sequence of events is sought, where
all of them must occur within a short
period. This distance is not symmetric,
and it may not be possible to convert
x into y in this case. Hence, d (x, y) is
either | y | − |x| or∞.

—Longest common subsequence distance
[Needleman and Wunsch 1970; Apos-
tolico and Guerra 1987]: allows only
insertions and deletions, all costing 1.
The name of this distance refers to the
fact that it measures the length of the
longest pairing of characters that can
be made between both strings, so
that the pairings respect the order
of the letters. The distance is the
number of unpaired characters. The
distance is symmetric, and it holds
0 ≤ d (x, y)≤ |x| + | y |.
In all cases, except the episode distance,

one can think that the changes can be
made over x or y . Insertions on x are the

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

38 G. Navarro

same as deletions in y and vice versa, and
substitutions can be made in any of the
two strings to match the other.

This paper is most concerned with the
simple edit distance, which we denote
ed (·). Although transpositions are of in-
terest (especially in case of typing errors),
there are few algorithms to deal with
them. However, we will consider them at
some point in this work (note that a trans-
position can be simulated with an inser-
tion plus a deletion, but the cost is dif-
ferent). We also point out when the algo-
rithms can be extended to have different
costs of the operations (which is of spe-
cial interest in computational biology), in-
cluding the extreme case of not allowing
some operations. This includes the other
distances mentioned.

Note that if the Hamming or edit dis-
tance are used, then the problem makes
sense for 0 < k < m, since if we can per-
form m operations we can make the pat-
tern match at any text position by means
of m substitutions. The case k = 0 cor-
responds to exact string matching and is
therefore excluded from this work. Un-
der these distances, we call α = k/m the
error level, which given the above condi-
tions, satisfies 0 < α < 1. This value gives
an idea of the “error ratio” allowed in the
match (i.e. the fraction of the pattern that
can be wrong).

We finish this section with some notes
about the algorithms we are going to con-
sider. Like string matching, this area is
suitable for very theoretical and for very
practical contributions. There exist a num-
ber of algorithms with important improve-
ments in their theoretical complexity, but
they are very slow in practice. Of course,
for carefully built scenarios (say, m =
100,000 and k = 2) these algorithms could
be a practical alternative, but these cases
do not appear in applications. Therefore,
we now point out the parameters of the
problem that we consider “practical,” i.e.
likely to be of use in some applications, and
when we later say “in practice” we mean
under the following assumptions.

—The pattern length can be as short as 5
letters (e.g. text retrieval) and as long

as a few hundred letters (e.g. computa-
tional biology).

—The number of errors allowed k satisfies
that k/m is a moderately low value. Re-
asonable values range from 1/m to 1/2.

—The text length can be as short as a few
thousand letters (e.g. computational bi-
ology) and as long as megabytes or giga-
bytes (e.g. text retrieval).

—The alphabet size σ can be as low as four
letters (e.g. DNA) and a high as 256 let-
ters (e.g. compression applications). It is
also reasonable to think in even larger
alphabets (e.g. oriental languages or
word oriented text compression). The al-
phabet may or may not be random.

3.2 Suffix Trees and Suffix Automata

Suffix trees [Weiner 1973; Knuth 1973;
Apostolico and Galil 1985] are widely used
data structures for text processing [Apos-
tolico 1985]. Any position i in a string S
automatically defines a suffix of S, namely
Si..| S |. In essence, a suffix tree is a trie
data structure built over all the suffixes
of S. At the leaf nodes the pointers to the
suffixes are stored. Each leaf represents a
suffix and each internal node represents a
unique substring of S. Every substring of
S can be found by traversing a path from
the root. Each node representing the sub-
string ax has a suffix link that leads to the
node representing the substring x.

To improve space utilization, this trie is
compacted into a Patricia tree [Morrison
1968]. This involves compressing unary
paths. At the nodes that root a compressed
path, an indication of which character to
inspect is stored. Once unary paths are
not present the tree has O(|S|) nodes in-
stead of the worst-case O(|S|2) of the trie
(see Figure 1). The structure can be built
in time O(|S|) [McCreight 1976; Ukkonen
1995].

A DAWG (Deterministic Acyclic Word
Graph) [Crochemore 1986; Blumer et al.
1985] built on a string S is a determin-
istic automaton able to recognize all the
substrings of S. As each node in the suf-
fix tree corresponds to a substring, the
DAWG is no more than the suffix tree

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

A Guided Tour to Approximate String Matching 39

Fig. 1 . The suffix trie and suffix tree for a sample string. The “$” is a special marker to denote the end of
the text. Two suffix links are exemplified in the trie: from "abra" to "bra" and then to "ra". The internal
nodes of the suffix tree show the character position to inspect in the string.

augmented with failure links for the let-
ters not present in the tree. Since final
nodes are not distinguished, the DAWG
is smaller. DAWGs have similar applica-
tions to those of suffix trees, and also
need O(| S |) space and construction time.
Figure 2 illustrates.

A suffix automaton on S is an automaton
that recognizes all the suffixes of S. The
nondeterministic version of this automa-
ton has a very regular structure and is
shown in Figure 3 (the deterministic ver-
sion can be seen in Figure 2).

3.3 The Tour

Sections 5–8 present a historical tour
across the four main approaches to on-
line approximate string matching (see Fig-
ure 4). In those historical discussions, keep
in mind that there may be a long gap be-
tween the time when a result is discovered
and when it finally gets published in its
definitive form. Some apparent inconsis-
tencies can be explained in this way (e.g.
algorithms which are “finally” analyzed
before they appear). We did our best in the
bibliography to trace the earliest version
of the works, although the full reference
corresponds generally to the final version.

At the beginning of each of these sec-
tions we give a taxonomy to help guide the
tour. The taxonomy is an acyclic graph
where the nodes are the algorithms and
the edges mean that the work lower down
can be seen as an evolution of the work in
the upper position (although sometimes
the developments are in fact indepen-
dent).

Finally, we specify some notation re-
garding time and space complexity. When
we say that an algorithm is O(x) time we
refer to its worst case (although sometimes
we say that explicitly). If the cost is av-
erage, we say so explicitly. We also some-
times say that the algorithm is O(x) cost,
meaning time. When we refer to space
complexity we say so explicitly. The av-
erage case analysis normally assumes a
random text, where each character is se-
lected uniformly and independently from
the alphabet. The pattern is not normally
assumed to be random.

4. THE STATISTICS OF THE PROBLEM

A natural question about approximate
searching is: what is the probability
of a match? This question is not only

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

40 G. Navarro

Fig. 2 . The DAWG or the suffix automaton for the sample string. If all the states are final, it is a DAWG.
If only the 2nd, 5th and rightmost states are final then it is a suffix automaton.

interesting in itself, but also essential for
the average case analysis of many search
algorithms, as will be seen later. We now
present the existing results and an empir-
ical validation. In this section we consider
the edit distance only. Some variants can
be adapted to these results.

The effort in analyzing the probabilistic
behavior of the edit distance has not given
good results in general [Kurtz and Myers
1997]. An exact analysis of the probability
of the occurrence of a fixed pattern allow-
ing k substitution errors (i.e. Hamming
distance) can be found in Régnier and
Szpankowski [1997], although the result
is not easy to average over all the possi-
ble patterns. The results we present here
apply to the edit distance model and, al-
though not exact, are easier to use in
general.

The result of Régnier and Szpankowski
[1997] holds under the assumption that
the characters of the text are indepen-
dently generated with fixed probabilities,
i.e. a Bernoulli model. In the rest of this
paper we consider a simpler model, the
“uniform Bernoulli model,” where all the
characters occur with the same probabil-
ity 1/σ . Although this is a gross simplifi-
cation of the real processes that generate
the texts in most applications, the results
obtained are quite reliable in practice. In
particular, all the analyses apply quite
well to biased texts if we replace σ by 1/p,
where p is the probability that two ran-
dom text characters are equal.

Although the problem of the average
edit distance between two strings is closely
related to the better studied LCS, the
well known results of Chvátal and Sankoff

[1975] and Deken [1979] can hardly be ap-
plied to this case. It can be shown that the
average edit distance between two random
strings of length m tends to a constant
fraction of m as m grows, but the frac-
tion is not known. It holds that for any
two strings of length m, m − lcs ≤ ed ≤
2(m− lcs), where ed is their edit distance
and lcs is the length of their longest com-
mon subsequence. As proved in Chvátal
and Sankoff [1975], the average LCS is be-
tween m/

√
σ and me/

√
σ for large σ , and

therefore the average edit distance is be-
tween m (1−e/

√
σ) and 2m (1−1/

√
σ). For

large σ it is conjectured that the true value
is m (1 − 1/

√
σ) [Sankoff and Mainville

1983].
For our purposes, bounding the proba-

bility of a match allowing errors is more
important than the average edit distance.
Let f (m, k) be the probability of a random
pattern of length m matching a given text
position with k errors or less under the edit
distance (i.e. the text position is reported
as the end of a match). In Baeza-Yates
and Navarro [1999], Navarro [1998], and
Navarro and Baeza-Yates [1999b] upper
and lower bounds on the maximum error
level α∗ for which f (m, k) is exponentially
decreasing on m are found. This is impor-
tant because many algorithms search for
potential matches that have to be verified
later, and the cost of such verifications is
polynomial in m, typically O(m2). There-
fore, if that event occurs with probability
O(γm) for some γ < 1 then the total cost
of verifications is O(m2γm) = o(1), which
makes the verification cost negligible.

We first show the analytical bounds for
f (m, k), then give a new result on average

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

A Guided Tour to Approximate String Matching 41

Fig. 3 . A nondeterministic suffix automaton to recognize any suffix of "abracadabra.” Dashed lines rep-
resent ε-transitions (i.e. they occur without consuming any input).

edit distance, and finally present an exper-
imental verification.

4.1 An Upper Bound

The upper bound for α∗ comes from the
proof that the matching probability is
f (m, k) = O(γm) for

γ =
(

1

σα
2α

1−α (1− α)2

)1−α
≤
(

e2

σ (1− α)2

)1−α

(1)

where we note that γ is 1/σ for α = 0 and
grows to 1 as α grows. This matching prob-
ability is exponentially decreasing on m as
long as γ < 1, which is equivalent to

α < 1− e√
σ
− O(1/σ) ≤ 1− e√

σ
(2)

Therefore, α <1− e/
√
σ is a conserva-

tive condition on the error level which en-
sures “few” matches. Therefore, the maxi-
mum level α∗ satisfies α∗> 1− e/

√
σ .

The proof is obtained using a combi-
natorial model. Based on the observation
that m − k common characters must ap-
pear in the same order in two strings that
match with k errors, all the possible alter-
natives to select the matching characters
from both strings are enumerated. This
model, however, does not take full advan-
tage of the properties of the edit distance:
even if m − k characters match, the dis-
tance can be larger than k. For example,
in ed (abc, bcd) = 2, i.e. although two char-
acters match, the distance is not 1.

4.2 A Lower Bound

On the other hand, the only optimistic
bound we know of is based on the consider-
ation that only substitutions are allowed

(i.e. Hamming distance). This distance is
simpler to analyze but its matching proba-
bility is much lower. Using a combinatorial
model again it is shown that the matching
probability is f (m, k) ≥ δm m−1/2, where

δ =
(

1
(1− α)σ

)1−α

Therefore an upper bound for the maxi-
mum α∗ value is α∗ ≤ 1−1/σ , since other-
wise it can be proved that f (m, k) is not
exponentially decreasing on m (i.e. it is
Ä(m−1/2)).

4.3 A New Result on Average Edit Distance

We can now prove that the average edit
distance is larger than m (1 − e/

√
σ) for

any σ (recall that the result of Chvátal and
Sankoff [1975] holds for large σ). We define
p(m, k) as the probability that the edit dis-
tance between two strings of length m is
at most k. Note that p(m, k) ≤ f (m, k) be-
cause in the latter case we can match with
any text suffix of length from m−k to m+k.
Then the average edit distance is

m∑
k= 0

kPr(ed = k) =
m∑

k= 0

Pr(ed > k)

=
m∑

k= 0

1− p(m, k) = m−
m∑

k= 0

p(m, k)

which, since p(m, k) increases with k, is
larger than

m−(K p(m, K)+(m−K)) = K (1−p(m, K))

for any K of our choice. In particu-
lar, for K /m< 1 − e/

√
σ we have that

p(m, K) ≤ f (m, K) = O(γm) for γ <1.
Therefore choosing K =m (1− e/

√
σ)− 1

yields that the edit distance is at least

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

42 G. Navarro

Fig. 4 . Taxonomy of the types of solutions for online searching.

m (1 − e/
√
σ)+O(1), for any σ . As we

see later, this proof converts a conjecture
about the average running time of an algo-
rithm [Chang and Lampe 1992] into a fact.

4.4 Empirical Verification

We verify the analysis experimentally in
this section (this is also taken from Baeza-
Yates and Navarro [1999] and Navarro
[1998]). The experiment consists of gener-
ating a large random text (n = 10 MB) and
running the search of a random pattern on
that text, allowing k = m errors. At each
text character, we record the minimum al-
lowed error k for which that text position
matches the pattern. We repeat the exper-
iment with 1,000 random patterns.

Finally, we build the cumulative his-
togram, finding how many text positions
have matched with up to k errors, for each
k value. We consider that k is “low enough”
up to where the histogram values become
significant, that is, as long as few text posi-
tions have matched. The threshold is set to
n/m2, since m2 is the normal cost of verify-
ing a match. However, the selection of this
threshold is not very important, since the
histogram is extremely concentrated. For
example, for m in the hundreds, it moves
from almost zero to almost n in just five or
six increments of k.

Figure 5 shows the results for σ = 32. On
the left we show the histogram we have
built, where the matching probability

undergoes a sharp increase at α∗. On the
right we show the α∗ value as m grows. It is
clear that α∗ is essentially independent of
m, although it is a bit lower for short pat-
terns. The increase in the left plot at α∗ is
so sharp that the right plot would be the
same if we plotted the value of the average
edit distance divided by m.

Figure 6 uses a stable m = 300 to
show the α∗ value as a function of σ . The
curve α= 1− 1/

√
σ is included to show its

closeness to the experimental data. Least
squares give the approximation α∗ =
1− 1.09/

√
σ , with a relative error smaller

than 1%. This shows that the upper
bound analysis (Eq. (2)) matches reality
better, provided we replace e by 1.09 in
the formulas.

Therefore, we have shown that the
matching probability has a sharp behav-
ior: for low α it is very low, not as low as
1/σm like exact string matching, but still
exponentially decreasing in m, with an
exponent base larger than 1/σ . At some α
value (that we call α∗) it sharply increases
and quickly becomes almost 1. This point
is close to α∗ = 1− 1/

√
σ in practice.

This is why the problem is of inter-
est only up to a given error level, since
for higher errors almost all text positions
match. This is also the reason that some
algorithms have good average behavior
only for low enough error levels. The point
α∗ = 1− 1/

√
σ matches the conjecture of

Sankoff and Mainville [1983].

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

A Guided Tour to Approximate String Matching 43

Fig. 5 . On the left, probability of an approximate match as a function of the error level (m =
300). On the right, the observed α∗ error level as a function of the pattern length. Both cases
correspond to random text with σ = 32.

5. DYNAMIC PROGRAMMING ALGORITHMS

We start our tour with the oldest among
the four areas, which directly inherits
from the earliest work. Most of the theo-
retical breakthroughs in the worst-case al-
gorithms belong to this category, although
only a few of them are really competitive in
practice. The latest practical work in this
area dates back to 1992, although there
are recent theoretical improvements. The
major achievements are O(kn) worst-case
algorithms and O(kn/

√
σ)average-case al-

gorithms, as well as other recent theoreti-
cal improvements on the worst-case.

We start by presenting the first algo-
rithm that solved the problem and then
give a historical tour on the improvements
over the initial solution. Figure 7 helps
guide the tour.

5.1 The First Algorithm

We now present the first algorithm to solve
the problem. It has been rediscovered
many times in the past, in different ar-
eas, e.g. Vintsyuk [1968], Needleman and
Wunsch [1970], Sankoff [1972], Sellers
[1974], Wagner and Fisher [1974], and
Lowrance and Wagner [1975] (there are
more in Ullman [1977], Sankoff and
Kruskal [1983], and Kukich [1992]). How-
ever, this algorithm computed the edit dis-
tance, and it was converted into a search
algorithm only in 1980 by Sellers [Sellers
1980]. Although the algorithm is not very

efficient, it is among the most flexible ones
in adapting to different distance functions.

We first show how to compute the edit
distance between two strings x and y .
Later, we extend that algorithm to search
a pattern in a text allowing errors. Finally,
we show how to handle more general dis-
tance functions.

5.1.1 Computing Edit Distance. The algo-
rithm is based on dynamic programming.
Imagine that we need to compute ed (x, y).
A matrix C0..|x|,0..| y | is filled, where Ci, j rep-
resents the minimum number of opera-
tions needed to match x1..i to y1.. j . This is
computed as follows:

Ci,0 = i
C0, j = j
Ci, j = if (xi = y j) then Ci−1, j−1

else 1+ min(Ci−1, j , Ci, j−1, Ci−1, j−1)

where at the end C|x|,| y | = ed (x, y). The ra-
tionale for the above formula is as follows.
First, Ci,0 and C0, j represent the edit dis-
tance between a string of length i or j and
the empty string. Clearly i (respectively
j) deletions are needed on the nonempty
string. For two nonempty strings of length
i and j , we assume inductively that all
the edit distances between shorter strings
have already been computed, and try to
convert x1..i into y1.. j .

Consider the last characters xi and y j .
If they are equal, then we do not need to

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

44 G. Navarro

Fig. 6 . Theoretical and practical values for α∗, for m = 300 and different σ values.

consider them and we proceed in the best
possible way to convert x1..i−1 into y1.. j−1.
On the other hand, if they are not equal,
we must deal with them in some way. Fol-
lowing the three allowed operations, we
can delete xi and convert in the best way
x1..i−1 into y1.. j , insert y j at the end of
x1..i and convert in the best way x1..i into
y1.. j−1, or substitute xi by y j and convert
in the best way x1..i−1 into y1.. j−1. In all
cases, the cost is 1 plus the cost for the rest
of the process (already computed). Notice
that the insertions in one string are equiv-
alent to deletions in the other.

An equivalent formula which is also
widely used is

C′i, j = min(Ci−1, j−1 + δ(xi, y j),

Ci−1, j + 1, Ci, j−1 + 1)

where δ(a, b) = 0 if a = b and 1 otherwise.
It is easy to see that both formulas are
equivalent because neighboring cells dif-
fer in at most one (just recall the meaning
of Ci, j), and therefore when δ(xi, y j) = 0
we have that Ci−1, j−1 cannot be larger
than Ci−1, j + 1 or Ci, j−1 + 1.

The dynamic programming algorithm
must fill the matrix in such a way that
the upper, left, and upper-left neighbors
of a cell are computed prior to computing
that cell. This is easily achieved by either

a row-wise left-to-right traversal or a
column-wise top-to-bottom traversal, but
we will see later that, using a difference
recurrence, the matrix can also be filled
by (upper-left to lower-right) diagonals or
“secondary” (upper-right to lower-left) di-
agonals. Figure 8 illustrates the algorithm
to compute ed ("survey," "surgery").

Therefore, the algorithm is O(|x|| y |)
time in the worst and average case.
However, the space required is only
O(min(|x|, | y |)). This is because, in the
case of a column-wise processing, only the
previous column must be stored in order
to compute the new one, and therefore
we just keep one column and update it.
We can process the matrix row-wise or
column-wise so that the space require-
ment is minimized.

On the other hand, the sequences of op-
erations performed to transform x into y
can be easily recovered from the matrix,
simply by proceeding from the cell C|x|,| y |
to the cell C0,0 following the path (i.e. se-
quence of operations) that matches the up-
date formula (multiple paths may exist).
In this case, however, we need to store the
complete matrix or at least an area around
the main diagonal.

This matrix has some properties that
can be easily proved by induction (see,
e.g. Ukkonen [1985a]) and which make it

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

A Guided Tour to Approximate String Matching 45

Fig. 7 . Taxonomy of algorithms based on the dynamic programming matrix. References are
shortened to first letters (single authors) or initials (multiple authors), and to the last two digits
of years.
Key: Vin68 = [Vintsyuk 1968], NW70 = [Needleman and Wunsch 1970], San72 = [Sankoff 1972],
Sel74= [Sellers 1974], WF74= [Wagner and Fisher 1974], LW75= [Lowrance and Wagner 1975],
Sel80 = [Sellers 1980], MP80 = [Masek and Paterson 1980], Ukk85a & Ukk85b = [Ukkonen
1985a; 1985b], Mye86a & Mye86b = [Myers 1986a; 1986b], LV88 & LV89 = [Landau and Vishkin
1988; 1989], GP90 = [Galil and Park 1990], UW93 = [Ukkonen and Wood 1993], GG88 = [Galil
and Giancarlo 1988], CL92= [Chang and Lampe 1992], CL94= [Chang and Lawler 1994], SV97=
[Sahinalp and Vishkin 1997], CH98 = [Cole and Hariharan 1998], and BYN99 = [Baeza-Yates
and Navarro 1999].

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

46 G. Navarro

Fig. 8 . The dynamic programming algorithm to
compute the edit distance between "survey" and
"surgery." The bold entries show the path to the
final result.

possible to design better algorithms. Some
of the most useful are that the values of
neighboring cells differ in at most one,
and that upper-left to lower-right diago-
nals are nondecreasing.

5.1.2 Text Searching. We now show how to
adapt this algorithm to search a short pat-
tern P in a long text T . The algorithm
is basically the same, with x= P and
y =T (proceeding column-wise so that
O(m) space is required). The only differ-
ence is that we must allow that any text
position is the potential start of a match.
This is achieved by setting C0, j = 0 for
all j ∈ 0..n. That is, the empty pattern
matches with zero errors at any text posi-
tion (because it matches with a text sub-
string of length zero).

The algorithm then initializes its col-
umn C0..m with the values Ci = i, and pro-
cesses the text character by character. At
each new text character Tj , its column vec-
tor is updated to C′0..m. The update for-
mula is

C′i = if (Pi = Tj) then Ci−1

else 1+min(C′i−1, Ci, Ci−1)

and the text positions are where Cm ≤ k is
reported.

The search time of this algorithm is
O(mn) and its space requirement is O(m).
This is a sort of worst case in the analy-
sis of all the algorithms that we consider
later. Figure 9 exemplifies this algorithm
applied to search the pattern "survey" in
the text "surgery" (a very short text in-

Fig. 9 . The dynamic programming algorithm to
search "survey" in the text "surgery" with two er-
rors. Each column of this matrix is a value of the
C vector. Bold entries indicate matching text posi-
tions.

deed) with at most k = 2 errors. In this
case there are 3 occurrences.

5.1.3 Other Distance Functions. It is easy
to adapt this algorithm for the other
distance functions mentioned. If the op-
erations have different costs, we add
the cost instead of adding 1 when comput-
ing Ci, j , i.e.

C0,0 = 0
Ci, j = min(Ci−1, j−1 + δ(xi, y j),

Ci−1, j + δ(xi, ε), Ci, j−1 + δ(ε, y j))

where we assume δ(a, a) = 0 for any a ∈ 6
and that C−1, j = Ci,−1 = ∞ for all i, j .

For distances that do not allow some op-
erations, we just take them out of the min-
imization formula, or, which is the same,
we assign∞ to their δ cost. For transposi-
tions, we allow a fourth rule that says that
Ci, j can be Ci−2, j−2 + 1 if xi−1xi = y j y j−1
[Lowrance and Wagner 1975].

The most complex case is to allow gen-
eral substring substitutions, in the form of
a finite set R of rules. The formula is given
in Ukkonen [1985a].

C0,0 = 0
Ci, j = min(Ci−1, j−1 if xi = y j ,

Ci−|s1|, j−|s2| + δ(s1, s2)
for each (s1, s2) ∈ R, x1..i = x ′s1,
y1.. j = y ′s2)

An interesting problem is how to com-
pute this recurrence efficiently. A naive
approach takes O(|R|mn), where |R| is the
sum of all the lengths of the strings in

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

A Guided Tour to Approximate String Matching 47

Fig. 10 . The Masek and Paterson algorithm partitions the dynamic programming matrix in cells
(r = 2 in this example). On the right, we shaded the entries of adjacent cells that influence the
current one.

R. A better solution is to build two Aho–
Corasick automata [Aho and Corasick
1975] with the left and right hand sides
of the rules, respectively. The automata
are run as we advance in both strings (left
hand sides in x and right hand sides in
y). For each pair of states (i1, i2) of the au-
tomata we precompute the set of substitu-
tions that can be tried (i.e. those δ’s whose
left and right hand sides match the suf-
fixes of x and y , respectively, represented
by the automata states). Hence, we know
in constant time (per cell) the set of pos-
sible substitutions. The complexity is now
much lower, in the worst case it is O(cmn)
where c is the maximum number of rules
applicable to a single text position.

As mentioned, the dynamic program-
ming approach is unbeaten in flexibility,
but its time requirements are indeed high.
A number of improved solutions have been
proposed over the years. Some of them
work only for the edit distance, while oth-
ers can still be adapted to other distance
functions. Before considering the improve-
ments, we mention that there exists a way
to see the problem as a shortest path prob-
lem on a graph built on the pattern and
the text [Ukkonen 1985a]. This reformula-
tion has been conceptually useful for more
complex variants of the problem.

5.2 Improving the Worst Case

5.2.1 Masek and Paterson (1980). It is in-
teresting that one important worst-case

theoretical result in this area is as old
as the Sellers algorithm [Sellers 1980] it-
self. In 1980, Masek and Paterson [1980]
found an algorithm whose worst case cost
is O(mn/ log2

σ n) and requires O(n) extra
space. This is an improvement over the
O(mn) classical complexity.

The algorithm is based on the Four-
Russians technique [Arlazarov et al.
1975]. Basically, it replaces the alphabet
6 by r-tuples (i.e. 6r) for a small r. Con-
sidered algorithmically, it first builds a ta-
ble of solutions of all the possible problems
(i.e. portions of the matrix) of size r × r,
and then uses the table to solve the origi-
nal problem in blocks of size r. Figure 10
illustrates.

The values inside the r × r size cells de-
pend on the corresponding letters in the
pattern and the text, which gives σ 2r pos-
sibilities. They also depend on the values
in the last column and row of the upper
and left cells, as well as the bottom-right
state of the upper left cell (see Figure 10).
Since neighboring cells differ in at most
one, there are only three choices for adja-
cent cells once the current cell is known.
Therefore, this adds only m (32r) possibil-
ities. In total, there are m (3σ)2r different
cells to precompute. Using O(n) memory
we have enough space for r = log3σ n, and
since we finally compute mn/r2 cells, the
final complexity follows.

The algorithm is only of theoretical in-
terest, since as the same authors estimate,
it will not beat the classical algorithm for

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

48 G. Navarro

Fig. 11 . On the left, the O(k2) algorithm to compute the edit distance. On
the right, the way to compute the strokes in diagonal transition algorithms.
The solid bold line is guaranteed to be part of the new stroke of e errors,
while the dashed part continues as long as both strings match.

texts below 40 GB size (and it would need
that extra space!). Adapting it to other
distance functions does not seem difficult,
but the dependencies among different
cells may become more complex.

5.2.2 Ukkonen (1983). In 1983, Ukkonen
[1985a] presented an algorithm able to
compute the edit distance between two
strings x and y in O(ed (x, y)2) time, or
to check in time O(k2) whether that dis-
tance was ≤k or not. This is the first
member of what has been called “diago-
nal transition algorithms,” since it is based
on the fact that the diagonals of the dy-
namic programming matrix (running from
the upper-left to the lower-right cells) are
monotonically increasing (more than that,
Ci+1, j+1 ∈ {Ci, j , Ci, j +1}). The algorithm is
based on computing in constant time the
positions where the values along the di-
agonals are incremented. Only O(k2) such
positions are computed to reach the lower-
right decisive cell.

Figure 11 illustrates the idea. Each di-
agonal stroke represents a number of er-
rors, and is a sequence where both strings
match. When a stroke of e errors starts, it
continues until the adjacent strokes of e−1
errors continue or until it keeps matching
the text. To compute each stroke in con-
stant time we need to know at what point
it matches the text. The way to do this in
constant time is explained shortly.

5.2.3 Landau and Vishkin (1985). In 1985
and 1986, Landau and Vishkin found the
first worst-case time improvements for the
search problem. All of them and the thread
that followed were diagonal transition al-
gorithms. In 1985, Landau and Vishkin
[1988] showed an algorithm which was
O(k2n) time and O(m) space, and in 1986
they obtained O(kn) time and O(n) space
[Landau and Vishkin 1989].

The main idea in Landau and Vishkin
was to adapt the Ukkonen’s diagonal
transition algorithm for edit distance
[Ukkonen 1985a] to text searching. Ba-
sically, the dynamic programming matrix
was computed diagonal-wise (i.e. stroke
by stroke) instead of column-wise. They
wanted to compute the length of each
stroke in constant time (i.e. the point
where the values along a diagonal were
to be incremented). Since a text position
was to be reported when matrix row m was
reached before incrementing more than k
times the values along the diagonal, this
immediately gave the O(kn) algorithm.
Another way to see it is that each diago-
nal is abandoned as soon as the kth stroke
ends, there are n diagonals and hence nk
strokes, each of them computed in con-
stant time (recall Figure 11).

A recurrence on diagonals (d) and num-
ber of errors (e), instead of rows (i) and
columns (j), is set up in the following
way:

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

A Guided Tour to Approximate String Matching 49

Fig. 12 . The diagonal transition matrix to search
"survey" in the text "surgery" with two errors. Bold
entries indicate matching diagonals. The rows are e
values and the columns are the d values.

Ld ,−1 = Ln+1,e = −1, for all e, d
Ld ,|d |−2 = |d | − 2, for −(k + 1) ≤ d ≤ −1
Ld ,|d |−1 = |d | − 1, for −(k + 1) ≤ d ≤ −1

Ld ,e = i+ max
`

(Pi+1..i+`=Td+i+1..d+i+`)

where i = max(Ld ,e−1 + 1,
Ld−1,e−1, Ld+1,e−1 + 1)

where the external loop updates e from
0 to k and the internal one updates d
from −e to n. Negative numbered diag-
onals are those virtually starting before
the first text position. Figure 12 shows our
search example using this recurrence.

Note that the L matrix has to be filled
by diagonals, e.g. L0,3, L1,2, L2,1, L0,4, L1,3,
L2,2, L0,5, The difficult part is how to
compute the strokes in constant time (i.e.
the max`(·)). The problem is equivalent
to knowing which is the longest prefix of
Pi..m that matches Tj ..n. This data is called
“matching statistics.” The algorithms of
this section differ basically in how they
manage to quickly compute the matching
statistics.

We defer the explanation of Landau and
Vishkin [1988] for later (together with
Galil and Park [1990]). In Landau and
Vishkin [1989], the longest match is ob-
tained by building the suffix tree (see
Section 3.2) of T ; P (text concatenated
with pattern), where the huge O(n) ex-
tra space comes from. The longest prefix
common to both suffixes Pi..m and Tj ..n can
be visualized in the suffix tree as follows:
imagine the root to leaf paths that end in
each of the two suffixes. Both parts share
the beginning of the path (at least they
share the root). The last suffix tree node
common to both paths represents a sub-
string which is precisely the longest com-
mon prefix. In the literature, this last com-
mon node is called lowest common ancestor
(LCA) of two nodes.

Despite being conceptually clear, it is
not easy to find this node in constant time.
In 1986, the only existing LCA algorithm
was that of Harel and Tarjan [1984], which
had constant amortized time, i.e. it an-
swered n′>n LCA queries in O(n′) time.
In our case we have kn queries, so each
one finally cost O(1). The resulting algo-
rithm, however, is quite slow in practice.

5.2.4 Myers (1986). In 1986, Myers also
found an algorithm with O(kn) worst-case
behavior [Myers 1986a, 1986b]. It needed
O(n) extra space, and shared the idea of
computing the k new strokes using the
previous ones, as well as the use of a
suffix tree on the text for the LCA algo-
rithm. Unlike other algorithms, this one
is able to report the O(kn) matching sub-
strings of the text (not only the endpoints)
in O(kn) time. This makes the algorithm
suitable for more complex applications,
for instance in computational biology. The
original reference is a technical report and
never went to press, but it has recently
been included in a larger work [Landau
et al. 1998].

5.2.5 Galil and Giancarlo (1988). In 1988,
Galil and Giancarlo [1988] obtained the
same time complexity as Landau and
Vishkin using O(m) space. Basically, the
suffix tree of the text is built by over-
lapping pieces of size O(m). The algo-
rithm scans the text four times, being even
slower than [Landau and Vishkin 1989].
Therefore, the result was of theoretical in-
terest.

5.2.6 Galil and Park (1989). One year later,
in 1989, Galil and Park [1990] obtained
O(kn) worst-case time and O(m2) space,
worse in theory than Galil and Giancarlo
[1988] but much better in practice. Their
idea is rooted in the work of Landau
and Vishkin [1988] (which had obtained
O(k2n) time). In both cases, the idea is to
build the matching statistics of the pat-
tern against itself (longest match between
Pi..m and Pj ..m), resembling in some sense
the basic ideas of Knuth et al. [1977]. But
this algorithm is still slow in practice.

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

50 G. Navarro

Fig. 13 . On the left, the progress of the stroke-wise algorithm. The relevant
strokes are enclosed in a dotted triangle and the last k strokes computed are in
bold. On the right, the selection of the k relevant strokes to cover the last text
area. We put in bold the parts of the strokes that are used.

Consider again Figure 11, and in par-
ticular the new stroke with e errors at the
right. The beginning of the stroke is dic-
tated by the three neighboring strokes of
e− 1 errors, but after the longest of the
three ceases to affect the new stroke, how
long it continues (dashed line) depends
only on the similarity between pattern and
text. More specifically, if the dotted line
(suffix of a stroke) at diagonal d spans
rows i1 to i1 + `, the longest match be-
tween Td+i1.. and Pi1.. has length `. There-
fore, the strokes computed by the algo-
rithm give some information about longest
matches between text and pattern. The
difficult part is how to use that infor-
mation.

Figure 13 illustrates the algorithm. As
explained, the algorithm progresses by
strokes, filling the matrix of Figure 12 di-
agonally, so that when a stroke is com-
puted, its three neighbors are already
computed. We have enclosed in a dot-
ted triangle the strokes that may contain
the information on longest matches rel-
evant to the new strokes that are being
computed. The algorithm of Landau and
Vishkin [1988] basically searches the rel-
evant information in this triangle and
hence it is in O(k2n) time.

This is improved in Galil and Park
[1990] to O(kn) by considering carefully
the relevant strokes. Let us call e-stroke
a stroke with e errors. First consider a
0-stroke. This full stroke (not only a suf-
fix) represents a longest match between

pattern and text. So, from the k previous
0-strokes we can keep the one that lasts
longer in the text, and up to that text posi-
tion we have all the information we need
about longest matches. We consider now
all the 1-strokes. Although only a suffix of
those strokes really represents a longest
match between pattern and text, we know
that this is definitely true after the last
text position is reached by a 0-stroke (since
by then no 0-stroke can “help” a 1-stroke
to last longer). Therefore, we can keep the
1-stroke that lasts longer in the text and
use it to define longest matches between
pattern and text when there are no more
active 0-strokes. This argument continues
for all the k errors, showing that in fact
the complete text area that is relevant can
be covered with just k strokes. Figure 13
(right) illustrates this idea.

The algorithm of Galil and Park [1990]
basically keeps this list of k relevant
strokes3 up to date all the time. Each time
a new e-stroke is produced, it is compared
against the current relevant e-stroke, and
if the new one lasts longer in the text than
the old one, it replaces the old stroke. Since
the algorithm progresses in the text, old
strokes are naturally eliminated with this
procedure.

A final problem is how to use the in-
direct information given by the relevant
strokes to compute the longest matches

3 Called “reference triples” there.

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

A Guided Tour to Approximate String Matching 51

between pattern and text. What we have
is a set of longest matches covering the
text area of interest, plus the precomputed
longest matches of the pattern against it-
self (starting at any position). We now
know where the dashed line of Figure 11
starts (say it is Pi1 and Td+i1) and want
to compute its length. To know where
the longest match between pattern and
text ends, we find the relevant stroke
where the beginning of the dashed line
falls. That stroke represents a maximal
match between Td+i1.. and some Pj1... As
we know by preprocessing the longest
match between Pi1.. and Pj1.., we can de-
rive the longest match between Pi1.. and
Td+i1... There are some extra complica-
tions to take care of when both longest
matches end at the same position or one
has length zero, but all them can be sorted
out in O(k) time per diagonal of the
L matrix.

Finally, Galil and Park show that the
O(m2) extra space needed to store the ma-
trix of longest matches can be reduced to
O(m) by using a suffix tree of the pattern
(not the text as in previous work) and LCA
algorithms, so we add different entries in
Figure 7 (note that Landau and Vishkin
[1988] already had O(m) space). Galil and
Park also show how to add transpositions
to the edit operations at the same com-
plexity. This technique can be extended to
all these diagonal transition algorithms.
We believe that allowing different integral
costs for the operations or forbidding some
of them can be achieved with simple mod-
ifications of the algorithms.

5.2.7 Ukkonen and Wood (1990). An idea
similar to that of using the suffix tree of
the pattern (and similarly slow in practice)
was independently discovered by Ukko-
nen and Wood in 1990 [Ukkonen and Wood
1993]. They use a suffix automaton (de-
scribed in Section 3.2) on the pattern to
find the matching statistics, instead of the
table. As the algorithm progresses over
the text, the suffix automaton keeps count
of the pattern substrings that match the
text at any moment. Although they report
O(m2) space for the suffix automaton, it
can take O(m) space.

5.2.8 Chang and Lawler (1994). In 1990,
Chang and Lawler [1994] repeated the
idea that was briefly mentioned in Galil
and Park [1990]: that matching statistics
can be computed using the suffix tree of
the pattern and LCA algorithms. However,
they used a newer and faster LCA algo-
rithm [Schieber and Vishkin 1988], truly
O(1), and reported the best time among
algorithms with guaranteed O(kn) perfor-
mance. However, the algorithm is still not
competitive in practice.

5.2.9 Cole and Hariharan (1998). In 1998,
Cole and Hariharan [1998] presented an
algorithm with worst case O(n(1+kc/m)),
where c = 3 if the pattern is “mostly ape-
riodic” and c = 4 otherwise.4 The idea is
that, unless a pattern has a lot of self-
repetition, only a few diagonals of a diag-
onal transition algorithm need to be com-
puted.

This algorithm can be thought of as a fil-
ter (see the following sections) with worst
case guarantees useful for very small k. It
resembles some ideas about filters devel-
oped in Chang and Lawler [1994]. Proba-
bly other filters can be proved to have good
worst cases under some periodicity as-
sumptions on the pattern, but this thread
has not been explored up to now. This algo-
rithm is an improvement over a previous
one [Sahinalp and Vishkin 1997], which is
more complex and has a worse complexity,
namely O(nk8(α log∗ n)1/ log 3). In any case,
the interest of this work is theoretical too.

5.3 Improving the Average Case

5.3.1 Ukkonen (1985). The first improve-
ment to the average case is due to Ukko-
nen in 1985. The algorithm, a short
note at the end of Ukkonen [1985b], im-
proved the dynamic programming algo-
rithm to O(kn) average time and O(m)
space. This algorithm was later called the
“cut-off heuristic.” The main idea is that,
since a pattern does not normally match
in the text, the values at each column

4 The definition of “mostly aperiodic” is rather tech-
nical and related to the number of auto-repetitions
that occur in the pattern. Most patterns are “mostly
aperiodic.”

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

52 G. Navarro

(from top to bottom) quickly reach k + 1
(i.e. mismatch), and that if a cell has a
value larger than k + 1, the result of
the search does not depend on its exact
value. A cell is called active if its value is
at most k. The algorithm simply keeps
count of the last active cell and avoids
working on the rest of the cells.

To keep the last active cell, we must
be able to recompute it for each new col-
umn. At each new column, the last ac-
tive cell can be incremented in at most
one, so we check if we have activated the
next cell at O(1) cost. However, it is also
possible that the last active cell now be-
comes inactive. In this case we have to
search upwards for the new last active cell.
Although we can work O(m) in a given
column, we cannot work more than O(n)
overall, because there are at most n incre-
ments of this value in the whole process,
and hence there are no more than n decre-
ments. Hence, the last active cell is main-
tained at O(1) amortized cost per column.

Ukkonen conjectured that this algo-
rithm was O(kn) on average, but this was
proven only in 1992 by Chang and Lampe
[1992]. The proof was refined in 1996 by
Baeza-Yates and Navarro [1999]. The re-
sult can probably be extended to more
complex distance functions, although with
substrings the last active cell must exceed
k by enough to ensure that it can never re-
turn to a value smaller than k. In partic-
ular, it must have the value k+ 2 if trans-
positions are allowed.

5.3.2 Myers (1986). An algorithm in
Myers [1986a] is based on diagonal tran-
sitions like those in the previous sections,
but the strokes are simply computed by
brute force. Myers showed that the result-
ing algorithm was O(kn) on average. This
is clear because the length of the strokes
is σ/(σ − 1)=O(1) on average. The same
algorithm was proposed again in 1989 by
Galil and Park [1990]. Since only the k
strokes need to be stored, the space is
O(k).

5.3.3 Chang and Lampe [1992]. In 1992,
Chang and Lampe [1992] produced a new
algorithm called “column partitioning,”

based on exploiting a different property
of the dynamic programming matrix.
They again consider the fact that, along
each column, the numbers are normally
increasing. They work on “runs” of con-
secutive increasing cells (a run ends when
Ci+1 6= Ci + 1). They manage to work
O(1) per run in the column actualization
process.

To update each run in constant time,
they precompute loc(j , x) = min j ′≥ j Pj ′ =
x for all pattern positions j and all char-
acters x (hence it needs O(mσ) space). At
each column of the matrix, they consider
the current text character x and the cur-
rent row j , and know in constant time
where the run is going to end (i.e. next
character match). The run can end before
this, namely where the parallel run of the
previous column ends.

Based on empirical observations, they
conjecture that the average length of the
runs is O(

√
σ). Notice that this matches

our result that the average edit distance
is m (1−e/

√
σ), since this is the number of

increments along columns, and therefore
there are O(m/

√
σ) nonincrements (i.e.

runs). From there it is clear that each
run has average length O(

√
σ). Therefore,

we have just proved Chang and Lampe’s
conjecture.

Since the paper uses the cut-off heuris-
tic of Ukkonen, their average search time
is O(kn/

√
σ). This is, in practice, the

fastest algorithm of this class.
Unlike the other algorithms in this

section, it seems difficult to adapt [Chang
and Lampe 1992] to other distance func-
tions, since their idea relies strongly on
the unitary costs. It is mentioned that
the algorithm could run in average time
O(kn log log(m)/σ) but it would not be
practical.

6. ALGORITHMS BASED ON AUTOMATA

This area is also rather old. It is interest-
ing because it gives the best worst-case
time algorithm (O(n), which matches the
lower bound of the problem). However,
there is a time and space exponential
dependence on m and k that limits its
practicality.

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

A Guided Tour to Approximate String Matching 53

Fig. 14 . Taxonomy of algorithms based on deterministic automata. References are shortened
to first letters (single authors) or initials (multiple authors), and to the last two digits of years.
Key: Ukk85b = [Ukkonen 1985b], MP80 = [Masek and Paterson 1980], Mel96 = [Melichar 1996],
Kur96 = [Kurtz 1996], Nav97b = [Navarro 1997b], and WMM96 = [Wu et al. 1996].

We first present the basic solution and
then discuss the improvements. Figure 14
shows the historical map of this area.

6.1 An Automaton for Approximate Search

An alternative and very useful way to con-
sider the problem is to model the search
with a nondeterministic automaton
(NFA). This automaton (in its determin-
istic form) was first proposed in Ukkonen
[1985b], and first used in nondeterminis-
tic form (although implicitly) in Wu and
Manber [1992b]. It is shown explicitly in
Baeza-Yates [1991], Baeza-Yates [1996],
and Baeza-Yates and Navarro [1999].

Consider the NFA for k = 2 errors
under the edit distance shown in Fig-
ure 15. Every row denotes the number of
errors seen (the first row zero, the second
row one, etc.). Every column represents
matching a pattern prefix. Horizontal
arrows represent matching a character
(i.e. if the pattern and text characters
match, we advance in the pattern and in
the text). All the others increment the
number of errors (move to the next row):
vertical arrows insert a character in the
pattern (we advance in the text but not
in the pattern), solid diagonal arrows
substitute a character (we advance in the

text and pattern), and dashed diagonal
arrows delete a character of the pattern
(they are ε-transitions, since we advance
in the pattern without advancing in
the text). The initial self-loop allows a
match to start anywhere in the text. The
automaton signals (the end of) a match
whenever a rightmost state is active. If
we do not care about the number of errors
in the occurrences, we can consider final
states those of the last full diagonal.

It is not hard to see that once a state
in the automaton is active, all the states
of the same column and higher num-
bered rows are active too. Moreover, at
a given text character, if we collect the
smallest active rows at each column,
we obtain the vertical vector of the
dynamic programming algorithm (in
this case [0, 1, 2, 3, 3, 3, 2]; compare to
Figure 9).

Other types of distances (Hamming,
LCS, and Episode) are obtained by
deleting some arrows of the automaton.
Different integer costs for the operations
can also be modeled by changing the
arrows. For instance, if insertions cost
2 instead of 1, we make the vertical
arrows move from rows i to rows i+ 2.
Transpositions are modeled by adding an
extra state Si, j between each pair of states

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

54 G. Navarro

Fig. 15 . An NFA for approximate string matching of the pattern "survey" with two errors. The
shaded states are those active after reading the text "surgery".

at position (i, j) and (i+ 1, j + 2), and
arrows labeled Pi+ 2 from state (i, j) to Si, j
and Pi+ 1 between Si, j and (i+ 1, j + 2)
[Melichar 1996]. Adapting to general sub-
string substitution needs more complex
setups but it is always possible.

This automaton can simply be made
deterministic to obtain O(n) worst-case
search time. However, as we see next, the
main problem becomes the construction
of the DFA (deterministic finite automa-
ton). An alternative solution is based on
simulating the NFA instead of making it
deterministic.

6.2 Implementing the Automaton

6.2.1 Ukkonen (1985). In 1985, Ukkonen
proposed the idea of a deterministic
automaton for this problem [Ukkonen
1985b]. However, an automaton like
that of Figure 15 was not explicitly
considered. Rather, each possible set of
values for the columns of the dynamic
programming matrix is a state of the
automaton. Once the set of all possible
columns and the transitions among them
were built, the text was scanned with the
resulting automaton, performing exactly
one transition per character read.

The big problem with this scheme was
that the automaton had a potentially
huge number of states, which had to be
built and stored. To improve space usage,

Ukkonen proved that all the elements
in the columns that were larger than
k+ 1 could be replaced by k+ 1 without
affecting the output of the search (the
lemma was used in the same paper to
design the cut-off heuristic described in
Section 5.3). This reduced the potential
number of different columns. He also
showed that adjacent cells in a column
differed in at most one. Hence, the column
states could be defined as a vector of m
incremental values in the set {−1, 0, 1}.

All this made it possible in Ukkonen
[1985b] to obtain a nontrivial bound on
the number of states of the automaton,
namely O(min(3m, m(2mσ)k)). This size,
although much better than the obvious
O((k+ 1)m), is still very large except for
short patterns or very low error levels.
The resulting space complexity of the
algorithm is m times the above value.
This exponential space complexity has
to be added to the O(n) time complexity,
as the preprocessing time to build the
automaton.

As a final comment, Ukkonen suggested
that the columns could be computed only
partially up to, say, 3k/2 entries. Since
he conjectured (and later was proved
correct in Chang and Lampe [1992]) that
the columns of interest were O(k) on
average, this would normally not affect
the algorithm, though it will reduce the
number of possible states. If at some
point the states not computed were really

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

A Guided Tour to Approximate String Matching 55

Fig. 16 . On the left, the automaton of Ukkonen [1985b] where each column is
a state. On the right, the automaton of Wu et al. [1996] where each region is a
state. Both compute the columns of the dynamic programming matrix.

needed, the algorithm would compute
them by dynamic programming.

Notice that to incorporate transposi-
tions and substring substitutions into
this conception we need to consider that
each state is the set of the j last columns
of the dynamic programming matrix,
where j is the longest left-hand side of
a rule. In this case it is better to build
the automaton of Figure 15 explicitly and
make it deterministic.

6.2.2 Wu, Manber and Myers (1992). It was
not until 1992 that Wu et al. looked into
this problem again [Wu et al. 1996]. The
idea was to trade time for space using
a Four Russians technique [Arlazarov
et al. 1975]. Since the cells could be ex-
pressed using only values in {−1, 0, 1}, the
columns were partitioned into blocks of r
cells (called “regions”) which took 2r bits
each. Instead of precomputing the tran-
sitions from a whole column to the next,
the transitions from a region to the next
region in the column were precomputed,
although the current region could now
depend on three previous regions (see
Figure 16). Since the regions were smaller
than the columns, much less space was
necessary. The total amount of work
was O(m/r) per column in the worst
case, and O(k/r) on average. The space
requirement was exponential in r. By
using O(n) extra space, the algorithm was
O(kn/ log n) on average and O(mn/ log n)
in the worst case. Notice that this shares

the Four Russians approach with [Masek
and Paterson 1980], but there is an im-
portant difference: the states in this case
do not depend on the letters of the pattern
and text. The states of the “automaton” of
Masek and Paterson [1980], on the other
hand, depend on the text and pattern.

This Four Russians approach is so flexi-
ble that this work was extended to handle
regular expressions allowing errors [Wu
et al. 1995]. The technique for exact reg-
ular expression searching is to pack por-
tions of the deterministic automaton in
bits and compute transition tables for
each portion. The few transitions among
portions are left nondeterministic and
simulated one by one. To allow errors,
each state is no longer active or inactive,
but they keep count of the minimum
number of errors that makes it active, in
O(log k) bits.

6.2.3 Melichar (1995). In 1995, Melichar
[1996] again studied the size of the de-
terministic automaton. By considering
the properties of the NFA of Figure 15,
he refined the bound of Ukkonen [1985b]
to O(min(3m, m(2mt)k , (k+ 2)m−k(k+ 1)!)),
where t= min(m+ 1, σ). The space com-
plexity and preprocessing time of the
automaton is t times the number of
states. Melichar also conjectured that this
automaton is bigger when there are pe-
riodicities in the pattern, which matches
the results of Cole and Hariharan [1998]
(Section 5.2), in the sense that periodic

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

56 G. Navarro

patterns are more problematic. This is
in fact a property shared with other
problems in string matching.

6.2.4 Kurtz (1996). In 1996, Kurtz [1996]
proposed another way to reduce the space
requirements to at most O(mn). It is an
adaptation of Baeza-Yates and Gonnet
[1994], who first proposed it for the Ham-
ming distance. The idea was to build the
automaton in lazy form, i.e. build only the
states and transitions actually reached in
the processing of the text. The automaton
starts as just one initial state and the
states and transitions are built as needed.
By doing this, all those transitions that
Ukkonen [1985b] considered and that
were not necessary were not built in fact,
without the need to guess. The price was
the extra overhead of a lazy construction
versus a direct construction, but the idea
pays off. Kurtz also proposed building
only the initial part of the automaton
(which should be the most commonly
traversed states) to save space.

Navarro [1997b; 1998] studied the
growth of the complete and lazy automata
as a function of m, k and n (this last
value for the lazy automaton only). The
empirical results show that the lazy
automaton grows with the text at a rate
of O(nβ), for 0 < β < 1, depending on
σ , m, and k. Some replacement policies
designed to work with bounded memory
are proposed in Navarro [1998].

7. BIT-PARALLELISM

These algorithms are based on exploiting
the parallelism of the computer when it
works on bits. This is also a new (after
1990) and very active area. The basic idea
is to “parallelize” another algorithm us-
ing bits. The results are interesting from
the practical point of view, and are espe-
cially significant when short patterns are
involved (typical in text retrieval). They
may work effectively for any error level.

In this section we find elements which
could strictly belong to other sections,
since we parallelize other algorithms.
There are two main trends: parallelize the

work of the nondeterministic automaton
that solves the problem (Figure 15),
or parallelize the work of the dynamic
programming matrix.

We first explain the technique and then
the results achieved by using it. Figure 17
shows the historical development of this
area.

7.1 The Technique of Bit-Parallelism

This technique, in common use in string
matching [Baeza-Yates 1991; 1992], was
introduced in the Ph.D. thesis of Baeza-
Yates [1989]. It consists in taking
advantage of the intrinsic parallelism of
the bit operations inside a computer word.
By using this fact cleverly, the number
of operations that an algorithm performs
can be cut down by a factor of at most
w, where w is the number of bits in a
computer word. Since in current architec-
tures w is 32 or 64, the speedup is very
significant in practice and improves with
technological progress. In order to relate
the behavior of bit-parallel algorithms
to other work, it is normally assumed
that w=2(log n), as dictated by the RAM
model of computation. We, however, prefer
to keep w as an independent value. We
now introduce some notation we use for
bit-parallel algorithms.

—The length of a computer word (in bits)
is w.

—We denote as b`..b1 the bits of a mask
of length `. This mask is stored some-
where inside the computer word. Since
the length w of the computer word is
fixed, we are hiding the details on where
we store the ` bits inside it.

—We use exponentiation to denote bit rep-
etition (e.g. 031 = 0001).

—We use C-like syntax for operations
on the bits of computer words: “|” is
the bitwise-or, “&” is the bitwise-and,
“ ̂ ” is the bitwise-xor, and “∼” com-
plements all the bits. The shift-left
operation, “<<,” moves the bits to the
left and enters zeros from the right,
i.e. bmbm−1..b2b1 << r = bm−r ...b2b10r .
The shift-right “>>” moves the bits
in the other direction. Finally, we

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

A Guided Tour to Approximate String Matching 57

Fig. 17 . Taxonomy of bit-parallel algorithms. References are shortened to first letters
(single authors) or initials (multiple authors), and to the last two digits of years.
Key: BY89= [Baeza-Yates 1989], WM92b= [Wu and Manber 1992b], Wri94= [Wright
1994], BYN99 = [Baeza-Yates and Navarro 1999], and Mye99 = [Myers 1999].

can perform arithmetic operations
on the bits, such as addition and
subtraction, which operate the bits as
if they formed a number. For instance,
b`..bx10000− 1 = b`..bx01111.

We now explain the first bit-parallel
algorithm, Shift-Or [Baeza-Yates and
Gonnet 1992], since it is the basis of
much of what follows. The algorithm
searches a pattern in a text (without
errors) by parallelizing the operation of
a nondeterministic finite automaton that
looks for the pattern. Figure 18 illustrates
this automaton.

This automaton has m+ 1 states, and
can be simulated in its nondeterministic
form in O(mn) time. The Shift-Or algo-
rithm achieves O(mn/w) worst-case time
(i.e. optimal speedup). Notice that if we
convert the nondeterministic automaton
to a deterministic one with O(n) search

time, we get an improved version of the
KMP algorithm [Knuth et al. 1977]. How-
ever KMP is twice as slow for m ≤ w.

The algorithm first builds a table B
which for each character c stores a bit
mask B[c] = bm..b1. The mask in B[c] has
the bit bi set if and only if Pi = c. The
state of the search is kept in a machine
word D = dm..d1, where di is 1 whenever
P1..i matches the end of the text read
up to now (i.e. the state numbered i in
Figure 18 is active). Therefore, a match is
reported whenever dm = 1.

D is set to 1m originally, and for each
new text character Tj , D is updated using
the formula5

D′ ← ((D ¿ 1) | 0m−11) & B[Tj]

5 The real algorithm uses the bits with the inverse
meaning and therefore the operation “| 0m−11” is not
necessary. We preferred to explain this more didactic
version.

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

58 G. Navarro

Fig. 18 . Nondeterministic automaton that searches "survey" exactly.

The formula is correct because the ith
bit is set if and only if the (i− 1)th bit was
set for the previous text character and the
new text character matches the pattern at
position i. In other words, Tj−i+ 1.. j = P1..i
if and only if Tj−i+ 1.. j−1 = P1..i−1 and Tj =
Pi. It is possible to relate this formula to
the movement that occurs in the nonde-
terministic automaton for each new text
character: each state gets the value of the
previous state, but this happens only if the
text character matches the corresponding
arrow.

For patterns longer than the computer
word (i.e. m>w), the algorithm uses
dm/we computer words for the simulation
(not all them are active all the time). The
algorithm is O(n) on average.

It is easy to extend Shift-Or to handle
classes of characters. In this extension,
each position in the pattern matches a
set of characters rather than a single
character. The classical string matching
algorithms are not extended so easily.
In Shift-Or, it is enough to set the ith
bit of B[c] for every c ∈ Pi (Pi is now a
set). For instance, to search for "survey"
in case-insensitive form, we just set to
1 the first bit of B["s"] and B["S"], and
the same with the rest. Shift-Or can also
search for multiple patterns (where the
complexity is O(mn/w) if we consider that
m is the total length of all the patterns);
it was later enhanced [Wu and Manber
1992b] to support a larger set of extended
patterns and even regular expressions.

Many online text algorithms can be
seen as implementations of an automaton
(classically, in its deterministic form).
Bit-parallelism has since its invention
become a general way to simulate simple
nondeterministic automata instead of
converting them to deterministic form.
It has the advantage of being much
simpler, in many cases faster (since it

makes better usage of the registers of
the computer word), and easier to extend
in handling complex patterns than its
classical counterparts. Its main disadvan-
tage is the limitation it imposes on the
size of the computer word. In many cases
its adaptations in coping with longer
patterns are not very efficient.

7.2 Parallelizing Nondeterministic Automata

7.2.1 Wu and Manber (1992). In 1992, Wu
and Manber [1992b] published a number
of ideas that had a great impact on the fu-
ture of practical text searching. They first
extended the Shift-Or algorithm to handle
wild cards (i.e. allow an arbitrary num-
ber of characters between two given posi-
tions in the pattern), and regular expres-
sions (the most flexible pattern that can be
searched efficiently). Of more interest to
us is that they presented a simple scheme
to combine any of the preceding extensions
with approximate string matching.

The idea is to simulate, using bit-
parallelism, the NFA of Figure 15, so that
each row i of the automaton fits in a com-
puter word Ri (each state is represented
by a bit). For each new text character,
all the transitions of the automaton are
simulated using bit operations among
the k+ 1 computer words. Notice that all
the k+ 1 computer words have the same
structure (i.e. the same bit is aligned on
the same text position). The update for-
mula to obtain the new R ′i values at text
position j from the current Ri values is

R ′0 = ((R0 ¿ 1) | 0m−11) & B[Tj]
R ′i+ 1 = ((Ri+ 1 ¿ 1) & B[Tj]) | Ri |

(Ri ¿ 1) | (R ′i ¿ 1)

and we start the search with Ri = 0m− i1i.
As expected, R0 undergoes a simple

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

A Guided Tour to Approximate String Matching 59

Shift-Or process, while the other rows
receive ones (i.e. active states) from previ-
ous rows as well. In the formula for R ′i+ 1,
expressed in that order, are horizontal,
vertical, diagonal and dashed diagonal
arrows.

The cost of this simulation is O(kdm/
wen) in the worst and average case, which
is O(kn) for patterns typical in text search-
ing (i.e. m ≤ w). This is a perfect speedup
over the serial simulation of the automa-
ton, which would cost O(mkn) time. Notice
that for short patterns, this is competitive
to the best worst-case algorithms.

Thanks to the simplicity of the con-
struction, the rows of the pattern can
be changed by a different automaton. As
long as one is able to solve a problem
for exact string matching, make k+ 1
copies of the resulting computer word,
and perform the same operations in the
k+ 1 words (plus the arrows that connect
the words), one has an algorithm to find
the same pattern allowing errors. Hence,
with this algorithm one is able to perform
approximate string matching with sets
of characters, wild cards, and regular
expressions. The algorithm also allows
some extensions unique in approximate
searching: a part of the pattern can be
searched with errors that another may
be forced to match exactly, and different
integer costs of the edit operations can
be accommodated (including not allowing
some of them). Finally, one is able to
search a set of patterns at the same time,
but this capability is very limited (since all
the patterns must fit in a computer word).

The great flexibility obtained encour-
aged the authors to build a software
called Agrep [Wu and Manber 1992a],6
where all these capabilities are imple-
mented (although some particular cases
are solved in a different manner). This
software has been taken as a reference in
all the subsequent research.

7.2.2 Baeza-Yates and Navarro (1996). In
1996, Baeza-Yates and Navarro presented
a new bit-parallel algorithm able to
parallelize the computation of the au-

6 Available at ftp.cs.arizona.edu.

tomaton even more [Baeza-Yates and
Navarro 1999]. The classical dynamic
programming algorithm can be thought
of as a column-wise “parallelization” of
the automaton [Baeza-Yates 1996]; Wu
and Manber [1992b] proposed a row-wise
parallelization. Neither algorithm was
able to increase the parallelism (even
if all the NFA states fit in a computer
word) because of the ε-transitions of
the automaton, which caused what we
call zero-time dependencies. That is, the
current values of two rows or two columns
depend on each other, and hence cannot
be computed in parallel.

In Baeza-Yates and Navarro [1999]
the bit-parallel formula for a diagonal
parallelization was found. They packed
the states of the automaton along diag-
onals instead of rows or columns, which
run in the same direction of the diagonal
arrows (notice that this is totally differ-
ent from the diagonals of the dynamic
programming matrix). This idea had been
mentioned much earlier by Baeza-Yates
[1991] but no bit-parallel formula was
found. There are m− k+ 1 complete diag-
onals (the others are not really necessary)
which are numbered from 0 to m− k. The
number Di is the row of the first active
state in diagonal i (all the subsequent
states in the diagonal are active because of
the ε-transitions). The new D′i values after
reading text position j are computed as

D′i = min(Di + 1, Di+ 1+ 1, g (Di−1, Tj))

where the first term represents the sub-
stitutions, the second term the insertions,
and the last term the matches (deletions
are implicit since we represent only the
lowest-row active state of each diagonal).
The main problem is how to compute the
function g , defined as

g (Di, Tj) = min({k+ 1} ∪
{r/r ≥ Di ∧ Pi+ r = Tj })

Notice that an active state that crosses
a horizontal edge has to propagate all the
way down by the diagonal. This was finally
solved in 1996 [Baeza-Yates and Navarro
1999; Navarro 1998] by representing

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

60 G. Navarro

the Di values in unary form and using
arithmetic operations on the bits which
have the desired propagation effects. The
formula can be understood either nu-
merically (operating the Di ’s) or logically
(simulating the arrows of the automaton).

The resulting algorithm is O(n) worst
case time and very fast in practice if
all the bits of the automaton fit in the
computer word (while Wu and Manber
[1992b] keeps O(kn)). In general, it is
O(dk(m − k)/wen) worst case time, and
O(dk2/wen) on average since the Ukkonen
cut-off heuristic is used (see Section 5.3).
The scheme can handle classes of char-
acters, wild cards and different integral
costs in the edit operations.

7.3 Parallelizing the Dynamic
Programming Matrix

7.3.1 Wright (1994). In 1994, Wright
[1994] presented the first work using
bit-parallelism on the dynamic program-
ming matrix. The idea was to consider
secondary diagonals (i.e. those that run
from the upper-right to the bottom-left)
of the matrix. The main observation is
that the elements of the matrix follow the
recurrence7

Ci, j = Ci−1, j−1 if Pi =Tj
or Ci−1, j

= Ci−1, j−1 − 1
or Ci, j−1

= Ci−1, j−1 − 1
Ci−1, j−1 + 1 otherwise

which shows that the new secondary
diagonal can be computed using the two
previous ones. The algorithm stores the
differences between Ci, j and Ci−1, j−1 and
represents the recurrence using modulo
4 arithmetic. The algorithm packs many
pattern and text characters in a computer
word and performs in parallel a number
of pattern versus text comparisons, then
using the vector of the results of the
comparisons to update many cells of the
diagonal in parallel. Since it has to store
characters of the alphabet in the bits,

7 The original one in Wright [1994] has errors.

the algorithm is O(nm log(σ)/w) in the
worst and average case. This was compet-
itive at that time for very small alphabets
(e.g. DNA). As the author recognizes,
it seems quite difficult to adapt this
algorithm for other distance functions.

7.3.2 Myers (1998). In 1998, Myers [1999]
found a better way to parallelize the com-
putation of the dynamic programming
matrix. He represented the differences
along columns instead of the columns
themselves, so that two bits per cell were
enough (in fact this algorithm can be seen
as the bit-parallel implementation of the
automaton which is made deterministic
in Wu et al. [1996], see Section 6.2). A
new recurrence is found where the cells
of the dynamic programming matrix are
expressed using horizontal and vertical
differences, i.e. 1vi, j = Ci, j − Ci−1, j and
1hi, j = Ci, j − Ci, j−1:

1vi, j = min(−Eqi, j ,1vi, j−1,1hi−1, j)
+ (1−1hi−1, j)

1hi, j = min(−Eqi, j ,1vi, j−1,1hi−1, j)
+ (1−1vi, j−1)

where Eqi, j is 1 if Pi = Tj and zero
otherwise. The idea is to keep packed
binary vectors representing the current
(i.e. j th) values of the differences, and
finding the way to update the vectors
in a single operation. Each cell Ci, j is
seen as a small processor that receives
inputs 1vi, j−1, 1hi−1, j , and Eqi, j and
produces outputs 1vi, j and 1hi, j . There
are 3 × 3 × 2 = 18 possible inputs, and a
simple formula is found to express the cell
logic (unlike Wright [1994], the approach
is logical rather than arithmetical). The
hard part is to parallelize the work along
the column because of the zero-time
dependency problem. The author finds
a solution which, despite the fact that a
very different model is used, resembles
that of Baeza-Yates and Navarro [1999].

The result is an algorithm that uses
the bits of the computer word better, with
a worst case of O(dm/wen) and an aver-
age case of O(dk/wen) since it uses the
Ukkonen cut-off (Section 5.3). The update
formula is a little more complex than that

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

A Guided Tour to Approximate String Matching 61

of Baeza-Yates and Navarro [1999] and
hence the algorithm is a bit slower, but it
adapts better to longer patterns because
fewer computer words are needed.

As it is difficult to surpass O(kn)
algorithms, this algorithm may be the
last word with respect to asymptotic
efficiency of parallelization, except for the
possibility to parallelize an O(kn) worst
case algorithm. As it is now common to
expect of bit-parallel algorithms, this
scheme is able to search some extended
patterns as well, but it seems difficult to
adapt it to other distance functions.

8. FILTERING ALGORITHMS

Our last category is quite new, starting
in 1990 and still very active. It is formed
by algorithms that filter the text, quickly
discarding text areas that do not match.
Filtering algorithms address only the
average case, and their major interest is
the potential for algorithms that do not
inspect all text characters. The major the-
oretical achievement is an algorithm with
average cost O(n(k+ logσ m)/m), which
was proven optimal. In practice, filtering
algorithms are the fastest too. All of them,
however, are limited in their applicability
by the error level α. Moreover, they need a
nonfilter algorithm to check the potential
matches.

We first explain the general concept and
then consider the developments that have
occurred in this area. See Figure 19.

8.1 The Concept of Filtering

Filtering is based on the fact that it may
be much easier to tell that a text position
does not match than to tell that it matches.
For instance, if neither "sur"nor "vey" ap-
pear in a text area, then "survey" cannot
be found there with one error under the
edit distance. This is because a single edit
operation cannot alter both halves of the
pattern.

Most filtering algorithms take advan-
tage of this fact by searching pieces of the
pattern without errors. Since the exact
searching algorithms can be much faster
than approximate searching ones, filter-
ing algorithms can be very competitive

(in fact, they dominate in a large range of
parameters).

It is important to notice that a filtering
algorithm is normally unable to discover
the matching text positions by itself.
Rather, it is used to discard (hopefully
large) areas of the text that cannot contain
a match. For instance, in our example, it
is necessary that either "sur" or "vey"
appear in an approximate occurrence, but
it is not sufficient. Any filtering algorithm
must be coupled with a process that
verifies all those text positions that could
not be discarded by the filter.

Virtually any nonfiltering algorithm
can be used for this verification, and in
many cases the developers of a filtering
algorithm do not care to look for the best
verification algorithm, but just use the
dynamic programming algorithm. The
selection is normally independent, but
the verification algorithm must behave
well on short texts because it can be
started at many different text positions
to work on small text areas. By careful
programming it is almost always possible
to keep the worst-case behavior of the
verifying algorithm (i.e. avoid verifying
overlapping areas).

Finally, the performance of filtering
algorithms is very sensitive to the error
level α. Most filters work very well on low
error levels and very badly otherwise. This
is related to the amount of text that the
filter is able to discard. When evaluating
filtering algorithms, it is important not
only to consider their time efficiency but
also their tolerance for errors. One possi-
ble measure for this filtration efficiency is
the total number of matches found divided
by the total number of potential matches
pointed out by the filtration algorithm
[Sutinen 1998].

A term normally used when referring
to filters is “sublinearity.” It is said that
a filter is sublinear when it does not
inspect all the characters in the text (like
the Boyer–Moore algorithms [Boyer and
Moore 1977] for exact searching, which
can at best be O(n/m)). However, no
online algorithm can be truly sublinear,
i.e. o(n), if m is independent of n. This is
only achievable with indexing algorithms.

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

62 G. Navarro

Fig. 19 . Taxonomy of filtering algorithms. Complexities are all on average. References are shortened
to first letters (single authors) or initials (multiple authors), and to the last two digits of years.
Key: TU93 = [Tarhio and Ukkonen 1993], JTU96 = [Jokinen et al. 1996], Nav97a = [Navarro 1997a],
CL94= [Chang and Lawler 1994], Ukk92= [Ukkonen 1992], BYN99= [Baeza-Yates and Navarro 1999],
WM92b = [Wu and Manber 1992b], BYP96 = [Baeza-Yates and Perleberg 1996], Shi96 = [Shi 1996],
NBY99c= [Navarro and Baeza-Yates 1999c], Tak94= [Takaoka 1994], CM94= [Chang and Marr 1994],
NBY98a = [Navarro and Baeza-Yates 1998a], NR00 = [Navarro and Raffinot 2000], ST95 = [Sutinen
and Tarhio 1995], and GKHO97 = [Giegerich et al. 1997].

We divide this area in two parts: moder-
ate and very long patterns. The algorithms
for the two areas are normally different,
since more complex filters are only worth-
while for longer patterns.

8.2 Moderate Patterns

8.2.1 Tarhio and Ukkonen (1990). Tarhio
and Ukkonen [1993]8 launched this area
in 1990, publishing an algorithm that

8 See also Jokinen et al. [1996], which has a correc-
tion to the algorithm.

used Boyer–Moore–Horspool techniques
[Boyer and Moore 1977; Horspool 1980]
to filter the text. The idea is to align the
pattern with a text window and scan
the text backwards. The scanning ends
where more than k “bad” text characters
are found. A “bad” character is one that not
only does not match the pattern position
it is aligned with, but also does not match
any pattern character at a distance of k
characters or less. More formally, assume
that the window starts at text position
j + 1, and therefore Tj + i is aligned with

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

A Guided Tour to Approximate String Matching 63

Pi. Then Tj + i is bad when Bad (i, Tj + i),
where Bad (i, c) has been precomputed as
c 6∈ {Pi−k , Pi−k+ 1, . . . , Pi, . . . , Pi+ k}.

The idea of the bad characters is that we
know for sure that we have to pay an error
to match them, i.e. they will not match as
a byproduct of inserting or deleting other
characters. When more than k characters
that are errors for sure are found, the cur-
rent text window can be abandoned and
shifted forward. If, on the other hand, the
beginning of the window is reached, the
area Tj + 1−k.. j+m must be checked with a
classical algorithm.

To know how much we can shift the
window, the authors show that there is
no point in shifting P to a new position
j ′ where none of the k+ 1 text charac-
ters that are at the end of the current
window (Tj +m−k, .., Tj +m) match the
corresponding character of P , i.e. where
Tj +m−r 6= Pm−r−(j ′− j). If those differences
are fixed with substitutions, we make
k+ 1 errors, and if they can be fixed
with less than k+ 1 operations, then it is
because we aligned some of the involved
pattern and text characters using inser-
tions and deletions. In this case, we would
have obtained the same effect by aligning
the matching characters from the start.

So for each pattern position i ∈
{m − k..m} and each text character a
that could be aligned to position i (i.e.
for all a ∈ 6), the shift to align a in the
pattern is precomputed, i.e. Shift(i, a) =
mins>0{Pi−s=a} (or m if no such s exists).
Later, the shift for the window is com-
puted as mini∈m−k..m Shift(i, Tj + i). This
last minimum is computed together with
the backward window traversal.

The analysis in Tarhio and Ukkonen
[1993] shows that the search time is
O(kn(k/σ + 1/(m − k))), without consid-
ering verification. In Appendix A.1 we
show that the amount of verification is
negligible for α < e−(2k+ 1)/σ . The analysis
is valid for mÀ σ >k, so we can simplify
the search time to O(k2n/σ). The algo-
rithm is competitive in practice for low
error levels. Interestingly, the version
k = 0 corresponds exactly to the Horspool
algorithm [Horspool 1980]. Like Horspool,
it does not take proper advantage of very

long patterns. The algorithm can proba-
bly be adapted to other simple distance
functions if we define k as the minimum
number of errors needed to reject a string.

8.2.2 Jokinen, Tarhio, and Ukkonen (1991).
In 1991, Jokinen, Tarhio and Ukkonen
[Jokinen et al. 1996] adapted a previ-
ous filter for the k-mismatches problem
[Grossi and Luccio 1989]. The filter is
based on the simple fact that inside any
match with at most k errors there must
be at least m − k letters belonging to the
pattern. The filter does not care about
the order of those letters. This is a simple
version of Chang and Lawler [1994] (see
Section 8.3), with less filtering efficiency
but simpler implementation.

The search algorithm slides a window
of length m over the text9 and keeps count
of the number of window characters that
belong to the pattern. This is easily done
with a table that, for each character a,
stores a counter of a’s in the pattern which
has not yet been seen in the text window.
The counter is incremented when an a en-
ters the window and decremented when
it leaves the window. Each time a posi-
tive counter is decremented, the window
character is considered as belonging to the
pattern. When there are m− k such char-
acters, the area is verified with a classical
algorithm.

The algorithm was analyzed by Navarro
[1997a] using a model of urns and balls. He
shows that the algorithm is O(n) time for
α < e−m/σ . Some possible extensions are
studied in Navarro [1998].

The resulting algorithm is competitive
in practice for short patterns, but it wors-
ens for long ones. It is simple to adapt to
other distance functions by just determin-
ing how many characters must match in
an approximate occurrence.

8.2.3 Wu and Manber (1992). In 1992, a
very simple filter was proposed by Wu and
Manber [1992b] (among many other ideas
in that work). The basic idea is in fact very

9 The original version used a variable size window.
This simplification is from Navarro [1997a].

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

64 G. Navarro

old [Rivest 1976]: if a pattern is cut in k+ 1
pieces, then at least one of the pieces must
appear unchanged in an approximate
occurrence. This is evident, since k errors
cannot alter the k+ 1 pieces. The proposal
was then to split the pattern in k+ 1
approximately equal pieces, search the
pieces in the text, and check the neighbor-
hood of their matches (of length m+ 2k).
They used an extension of Shift-Or
[Baeza-Yates and Gonnet 1992] to search
all the pieces simultaneously in O(mn/w)
time. In the same year, 1992, Baeza-
Yates and Perleberg [1996] suggested
better algorithms for the multipattern
search: an Aho–Corasick machine [Aho
and Corasick 1975] to guarantee O(n)
search time (excluding verifications), or
Commentz-Walter [1979].

Only in 1996 was the improvement
really implemented [Baeza-Yates and
Navarro 1999], by adapting the Boyer–
Moore–Sunday algorithm [Sunday 1990]
to multipattern search (using a trie of
patterns and a pessimistic shift table).
The resulting algorithm is surprisingly
fast in practice for low error levels.

There is no closed expression for the
average case cost of this algorithm [Baeza-
Yates and Régnier 1990], but we show in
Appendix A.2 that a gross approximation
is O(kn logσ (m)/σ). Two independent
proofs in Baeza-Yates and Navarro [1999]
and Baeza-Yates and Perleberg [1996]
show that the cost of the search dominates
for α <1/(3 logσ m). A simple way to see
this is to consider that checking a text
area costs O(m2) and is done when any of
the k+ 1 pieces of length m/(k+ 1) match,
which happens with probability near
k/σ 1/α. The result follows from requiring
the average verification cost to be O(1).

This filter can be adapted, with some
care, to other distance functions. The main
issue is to determine how many pieces an
edit operation can destroy and how many
edit operations can be made before sur-
passing the error threshold. For example,
a transposition can destroy two pieces in
one operation, so we would need to split
the pattern in 2k+ 1 pieces to ensure that
one is unaltered. A more clever solution for
this case is to leave a hole of one character

between each pair of pieces, so that the
transposition cannot alter both.

8.2.4 Baeza-Yates and Navarro (1996).
The bit-parallel algorithms presented in
Section 7 [Baeza-Yates and Navarro 1999]
were also the basis for novel filtering
techniques. As the basic algorithm is
limited to short patterns, the algorithms
split longer patterns in j parts, making
them short enough to be searchable with
the basic bit-parallel automaton (using
one computer word).

The method is based on a more general
version of the partition into k+ 1 pieces
[Myers 1994a; Baeza-Yates and Navarro
1999]. For any j , if we cut the pattern in j
pieces, then at least one of them appears
with bk/j c errors in any occurrence of the
pattern. This is clear, since if each piece
needs more than k/j errors to match,
then the complete match needs more than
k errors.

Hence, the pattern was split in j pieces
(of length m/j) which were searched with
k/j errors using the basic algorithm. Each
time a piece was found, the neighborhood
was verified to check for the complete pat-
tern. Notice that the error level α for the
pieces is kept unchanged.

The resulting algorithm is O(n
√

mk/w)
on average. Its maximum α value is
1− emO(1/

√
w)/
√
σ , smaller than 1− e/

√
σ

and worsening as m grows. This may be
surprising since the error level α is the
same for the subproblems. The reason
is that the verification cost keeps O(m2)
but the matching probability is O(γm/j),
larger than O(γm) (see Section 4).

In 1997, the technique was enriched
with “superimposition” [Baeza-Yates
and Navarro 1999]. The idea is to avoid
performing one separate search for
each piece of the pattern. A multipat-
tern approximate searching is designed
using the ability of bit-parallelism to
search for classes of characters. As-
sume that we want to search "survey"
and "secret." We search the pattern
"s[ue][rc][vr]e[yt],"where [ab] means
{a, b}. In the NFA of Figure 15, the hor-
izontal arrows are traversable by more
than one letter. Clearly, any match of each

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

A Guided Tour to Approximate String Matching 65

Fig. 20 . The hierarchical verification method for
a pattern split in four parts. The boxes (leaves) are
the elements which are really searched, and the root
represents the whole pattern. At least one pattern
at each level must match in any occurrence of the
complete pattern. If the bold box is found, all the
bold lines may be verified.

of the two patterns is also a match of the
superimposed pattern, but not vice-versa
(e.g. "servet" matches zero errors). So
the filter is weakened but the search is
made faster. Superimposition allowed
lowering the average search time to O(n)
for α <1− emO(1/

√
w)
√

m/σ
√

w and to
O(n

√
mk/(σw)) for the maximum α of

the 1996 version. By using a j value
smaller than the one necessary to put
the automata in single machine words,
an intermediate scheme was obtained
that softly adapted to higher error levels.
The algorithm was O(kn log(m)/w) for
α < 1− e/

√
σ .

8.2.5 Navarro and Baeza-Yates (1998). The
final twist in the previous scheme was the
introduction of “hierarchical verification”
in 1998 [Navarro and Baeza-Yates 1998a].
For simplicity assume that the pattern is
partitioned in j = 2r pieces, although the
technique is general. The pattern is split
in two halves, each one to be searched
with bk/2c errors. Each half is recursively
split in two and so on, until the pattern is
short enough to make its NFA fit in a com-
puter word (see Figure 20). The leaves of
this tree are the pieces actually searched.
When a leaf finds a match, instead of
checking the whole pattern as in the
previous technique, its parent is checked
(in a small area around the piece that
matched). If the parent is not found, the
verification stops, otherwise it continues
with the grandparent until the root (i.e.
the whole pattern) is found. This is correct
because the partitioning scheme applies
to each level of the tree: the grandparent

cannot appear if none of its children
appear, even if a grandchild appeared.

Figure 20 shows an example. If one
searches the pattern "aaabbbcccddd" with
four errors in the text "xxxbbxxxxxxx,"
and splits the pattern in four pieces to be
searched with one error, the piece "bbb"
will be found in the text. In the original
approach, one would verify the complete
pattern in the text area, while with the
new approach one verifies only its parent
"aaabbb" and immediately determines
that there cannot be a complete match.

An orthogonal hierarchical verification
technique is also presented in Navarro
and Baeza-Yates [1998a] to include
superimposition in this scheme. If the
superimposition of four patterns matches,
the set is split in two sets of two patterns
each, and it is checked whether some of
them match instead of verifying all the
four patterns one by one.

The analysis in Navarro [1998] and
Navarro and Baeza-Yates [1998a] shows
that the average verification cost drops to
O((m/j)2). Only now the problem scales
well (i.e. O(γm/j) verification probability
and O((m/j)2) verification cost). With
hierarchical verification, the verification
cost stays negligible for α < 1− e/

√
σ . All

the simple extensions of bit-parallel algo-
rithms apply, although the partition into
j pieces may need some redesign for other
distances. Notice that it is very difficult
to break the barrier of α∗ = 1 − e/

√
σ for

any filter because, as shown in Section 4,
there are too many real matches, and even
the best filters must check real matches.

In the same year, 1998, the same
authors [Navarro and Baeza-Yates 1999c;
Navarro 1998] added hierarchical verifi-
cation to the filter that splits the pattern
in k+ 1 pieces and searches them with
zero errors. The analysis shows that
with this technique the verification cost
does not dominate the search time for
α <1/ logσ m. The resulting filter is the
fastest for most cases of interest.

8.2.6 Navarro and Raffinot (1998). In 1998
Navarro and Raffinot [Navarro and
Raffinot 2000; Navarro 1998] presented a
novel approach based on suffix automata

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

66 G. Navarro

Fig. 21 . The construction to search any reverse prefix of "survey" allowing 2 errors.

(see Section 3.2). They adapted an exact
string matching algorithm, BDM, to allow
errors.

The idea of the original BDM algorithm
is as follows [Crochemore et al. 1994;
Crochemore and Rytter 1994]. The deter-
ministic suffix automaton of the reverse
pattern is built so that it recognizes the
reverse prefixes of the pattern. Then the
pattern is aligned with a text window, and
the window is scanned backwards with
the automaton (this is why the pattern
is reversed). The automaton is active as
long as what it has read is a substring
of the pattern. Each time the automaton
reaches a final state, it has seen a pattern
prefix, so we remember the last time
it happened. If the automaton arrives
with active states at the beginning of
the window then the pattern has been
found, otherwise what is there is not
a substring of the pattern and hence
the pattern cannot be in the window. In
any case the last window position that
matched a pattern prefix gives the next
initial window position. The algorithm
BNDM [Navarro and Raffinot 2000] is
a bit-parallel implementation (using
the nondeterministic suffix automaton,
see Figure 3) which is much faster in
practice and allows searching for classes
of characters, etc.

A modification of Navarro and Raffinot
[2000] is to build a NFA to search the re-

versed pattern allowing errors, modify it
to match any pattern suffix, and apply es-
sentially the same BNDM algorithm us-
ing this automaton. Figure 21 shows the
resulting automaton.

This automaton recognizes any reverse
prefix of P allowing k errors. The win-
dow will be abandoned when no pattern
substring matches what was read with k
errors. The window is shifted to the next
pattern prefix found with k errors. The
matches must start exactly at the initial
window position. The window length is
m − k, not m, to ensure that if there is
an occurrence starting at the window
position then a substring of the pattern
occurs in any suffix of the window (so that
we do not abandon the window before
reaching the occurrence). Reaching the
beginning of the window does not guaran-
tee a match, however, so we have to check
the area by computing edit distance from
the beginning of the window (at most
m+ k text characters).

In Appendix A.3 it is shown that
the average complexity10 is O(n(α+α∗
logσ (m)/m)/((1−α)α∗ −α)) and the filter
works well for α < (1− e/

√
σ)/(2− e/

√
σ),

which for large alphabets tends to 1/2.
The result is competitive for low error
levels, but the pattern cannot be very

10 The original analysis of Navarro [1998] is inaccu-
rate.

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

A Guided Tour to Approximate String Matching 67

Fig. 22 . Algorithms LET and SET. LET covers all the text with pattern substrings, while
SET works only at block beginnings and stops when it finds k differences.

long because of the bit-parallel imple-
mentation. Notice that trying to do this
with the deterministic BDM would have
generated a very complex construction,
while the algorithm with the nondeter-
ministic automaton is simple. Moreover, a
deterministic automaton would have too
many states, just as in Section 6.2. All
the simple extensions of bit-parallelism
apply, provided the window length m − k
is carefully reconsidered.

A recent software program, called
{\em nrgrep}, capable of fast, exact, and
approximate searching of simple and
complex patterns has been built with this
method [Navarro 2000b].

8.3 Very Long Patterns

8.3.1 Chang and Lawler (1990). In 1990,
Chang and Lawler [1994] presented two
algorithms (better analyzed in Giegerich
et al. [1997]). The first one, called LET
(for “linear expected time”), works as
follows: the text is traversed linearly, and
at each time the longest pattern substring
that matches the text is maintained.
When the substring cannot be extended
further, it starts again from the current
text position; Figure 22 illustrates.

The crucial observation is that, if less
than m − k text characters have been
covered by concatenating k longest sub-
strings, then the text area does not match
the pattern. This is evident because a
match is formed by k+ 1 correct strokes
(recall Section 5.2) separated by k errors.
Moreover, the strokes need to be ordered,
which is not required by the filter.

The algorithm uses a suffix tree
on the pattern to determine in a linear
pass the longest pattern substring that

matches the text seen up to now. Notice
that the article is from 1990, the same
year that Ukkonen and Wood [1993] did
the same with a suffix automaton (see
Section 5.2). Therefore, the filtering is in
O(n) time. The authors use Landau and
Vishkin [1989] as the verifying algorithm
and therefore the worst case is O(kn).
The authors show that the filtering time
dominates for α < 1/ logσ m+O(1). The
constants are involved, but practical
figures are α ≤ 0.35 for σ = 64 or α ≤ 0.15
for σ = 4.

The second algorithm presented is
called SET (for “sublinear expected
time”). The idea is similar to LET, except
that the text is split in fixed blocks of size
(m− k)/2, and the check for k contiguous
strokes starts only at block boundaries.
Since the shortest match is of length
m− k, at least one of these blocks is
always contained completely in a match.
If one is able to discard the block, no
occurrence can contain it. This is also
illustrated in Figure 22.

The sublinearity is clear once it is
proven that a block is discarded on av-
erage in O(k logσ m) comparisons. Since
2n/(m − k) blocks are considered, the
average time is O(α n logσ (m)/(1 − α)).
The maximum α level stays the same as in
LET, so the complexity can be simplified
to O(α n logσ m). Although the proof that
limits the comparisons per block is quite
involved, it is not hard to see intuitively
why it is true: the probability of finding a
stroke of length ` in the pattern is limited
by m/σ `, and the detailed proof shows
that ` = logσ m is on average the longest
stroke found. This contrasts with the
result of Myers [1986a] (Section 5.3), that
shows that k strokes add up O(k) length.

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

68 G. Navarro

Fig. 23 . Q-gram algorithm. The left one [Ukkonen 1992] counts the number of pattern q-grams
in a text window. The right one [Sutinen and Tarhio 1995] finds sequences of pattern q-grams in
approximately the same text positions (we have put in bold a text sample and the possible q-grams
to match it).

The difference is that here we can take
the strokes from anywhere in the pattern.

Both LET and SET are effective for
very long patterns only, since their over-
head does not pay off on short patterns.
Different distance functions can be accom-
modated after rereasoning the adequate
k values.

8.3.2 Ukkonen (1992). In 1992, Ukkonen
[1992] independently rediscovered some
of the ideas of Chang and Lampe. He
presented two filtering algorithms, one of
which (based on what he called “maximal
matches”) is similar to the LET of Chang
and Lawler [1994] (in fact Ukkonen
presents it as a new “block distance”
computable in linear time, and shows that
it serves as a filter for the edit distance).
The other filter is the first reference to
“q-grams” for online searching (there are
much older ones in indexed searching
[Ullman 1977]).

A q-gram is a substring of length q.
A filter was proposed based on counting
the number of q-grams shared between
the pattern and a text window (this is
presented in terms of a new “q-gram
distance” which may be of interest on
its own). A pattern of length m has
(m−q+ 1) overlapping q-grams. Each
error can alter q q-grams of the pattern,
and therefore (m−q+ 1 − kq) pattern
q-grams must appear in any occurrence;
Figure 23 illustrates.

Notice that this is a generalization
of the counting filter of Jokinen et al.
[1996] (Section 8.2), which corresponds

to q = 1. The search algorithm is similar
as well, although of course keeping a
table with a counter for each of the σ q

q-grams is impractical (especially be-
cause only m− q+ 1 of them are present).
Ukkonen uses a suffix tree to keep count
of the last q-gram seen in linear time (the
relevant information can be attached to
the m− q+ 1 important nodes at depth q
in the suffix tree).

The filter therefore takes linear time.
There is no analysis to show which is
the maximum error level tolerated by
the filter, so we attempt a gross analysis
in Appendix A.4, valid for large m. The
result is that the filter works well for
α < O(1/ logσ m), and that the optimal
q to obtain it is q = logσ m. The search
algorithm is more complicated than that
of Jokinen et al. [1996]. Therefore, using
larger q values only pays off for larger
patterns. Different distance functions
are easily accommodated by recomputing
the number of q-grams that must be
preserved in any occurrence.

8.3.3 Takaoka (1994). In 1994, Takaoka
[1994] presented a simplification of
Chang and Lawler [1994]. He considered
h-samples of the text (which are non-
overlapping q-grams of the text taken each
h characters, for h≥q). The idea is that if
one h-sample is found in the pattern, then
a neighborhood of the area is verified.

By using h = b(m−k−q+ 1)/(k+ 1)c one
cannot miss a match. The easiest way to
see this is to start with k = 0. Clearly, we
need h = m−q+ 1 to not lose any matches.

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

A Guided Tour to Approximate String Matching 69

For larger k, recall that if the pattern is
split in k+ 1 pieces some of them must
appear with no errors. The filter divides
h by k+ 1 to ensure that any occurrence of
those pieces will be found (we are assum-
ing q < m/(k+ 1)).

Using a suffix tree of the pattern, the
h-sample can be found in O(q) time.
Therefore the filtering time is O(qn/h),
which is O(αn logσ (m)/(1 − α)) if the
optimal q = logσ m is used. The error
level is again α < O(1/ logσ m), which
makes the time O(αn logσ m).

8.3.4 Chang and Marr (1994). It looks like
O(αn logσ m) is the best complexity achiev-
able by using filters, and that it will work
only for α = O(1/ logσ m). But in 1994,
Chang and Marr obtained an algorithm
which was

O
(

k+ logσ m
m

n
)

for α < ρσ , where ρσ depends only on σ
and it tends to 1 − ē/

√
σ for very large σ .

At the same time, they proved that this
was a lower bound for the average com-
plexity of the problem (and therefore their
algorithm was optimal on average). This
is a major theoretical breakthrough.

The lower bound is obtained by taking
the maximum (or sum) of two simple facts:
the first one is the O(n logσ (m)/m) bound
of Yao [1979] for exact string matching,
and the second one is the obvious fact
that in order to discard a block of m text
characters, at least k characters should be
examined to find the k errors (and hence
O(kn/m) is a lower bound). Also, the
maximum error level is optimal according
to Section 4. What is impressive is that
an algorithm with such complexity was
found.

The algorithm is a variation of SET
[Chang and Lawler 1994]. It is of poly-
nomial space in m, i.e. O(mt) space for
some constant t which depends on σ . It is
based on splitting the text in contiguous
substrings of length ` = t logσ m. Instead
of finding in the pattern the longest exact
matches starting at the beginning of
blocks of size (m − k)/2, it searches the

text substrings of length ` in the pattern
allowing errors.

The algorithm proceeds as follows. The
best matches allowing errors inside P are
precomputed for every `-tuple (hence the
O(mt) space). Starting at the beginning of
the block, it searches consecutive `-tuples
in the pattern (each in O(`) time), until
the total number of errors made exceeds
k. If by that time it has not yet covered
m− k text characters, the block can be
safely skipped.

The reason why this works is a simple
extension of SET. We have found an area
contained in the possible occurrence which
cannot be covered with k errors (even al-
lowing the use of unordered portions of the
pattern for the match). The algorithm is
only practical for very long patterns, and
can be extended for other distances with
the same ideas as the other filtration and
q-gram methods.

It is interesting to notice that
α≤ 1− ē/

√
σ is the limit we have dis-

cussed in Section 4, which is a firm
barrier for any filtering mechanism.
Chang and Lawler proved an asymptotic
result, while a general bound is proved
in Baeza-Yates and Navarro [1999]. The
filters of Chang and Marr [1994] and
Navarro and Baeza-Yates [1998a] reduce
the problem to fewer errors instead of to
zero errors. An interesting observation is
that it seems that all the filters that par-
tition the problem into exact search can
be applied for α = O(1/ logσ m), and that
in order to improve this to 1 − ē/

√
σ we

must partition the problem into (smaller)
approximate searching subproblems.

8.3.5 Sutinen and Tarhio (1995). Sutinen
and Tarhio [1995] generalized the
Takaoka filter in 1995, improving its
filtering efficiency. This is the first filter
that takes into account the relative posi-
tions of the pattern pieces that match in
the text (all the previous filters matched
pieces of the pattern in any order). The
generalization is to force s q-grams of the
pattern to match (not just one). The pieces
must conserve their relative ordering in
the pattern and must not be more than
k characters away from their correct

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

70 G. Navarro

position (otherwise we need to make more
than k errors to use them). This method
is also illustrated in Figure 23.

In this case, the sampling step is re-
duced to h=b(m− k − q+ 1)/(k+ s)c. The
reason for this reduction is that, to ensure
that s pieces of the pattern match, we
need to cut the pattern into k+ s pieces.
The pattern is divided in k+ s pieces and
a hashed set is created for each piece
so that the pieces are forced not to be
too far away from their correct positions.
The set contains the q-grams of the piece
and some neighboring ones too (because
the sample can be slightly misaligned). At
search time, instead of a single h-sample,
they consider text windows of contiguous
sequences of k+ s h-samples. Each of
these h-samples is searched in the corr-
esponding set, and if at least s are found
the area is verified. This is a sort of
Hamming distance, and the authors
resort to an efficient algorithm for that
distance [Baeza-Yates and Gonnet 1992]
to process the text.

The resulting algorithm is O(αn logσ m)
on average using optimal q= logσ m, and
works well for α <1/ logσ m. The algo-
rithm is better suited for long patterns,
although with s= 2 it can be reasonably
applied to short ones as well. In fact the
analysis is done for s = 2 only in Sutinen
and Tarhio [1995].

8.3.6 Shi (1996). In 1996 Shi [1996] pro-
posed to extend the idea of the k+ 1 pieces
(explained in Section 8.2) to k+ s pieces,
so that at least s pieces must match. This
idea is implicit in the filter of Sutinen and
Tarhio but had not been explicitly written
down. Shi compared his filter against
the simple one, finding that the filtering
efficiency was improved. However, this
improvement will be noticeable only
for long patterns. Moreover, the online
searching efficiency is degraded because
the pieces are shorter (which affects any
Boyer–Moore-like search), and because
the verification logic is more complex. No
analysis is presented in the paper, but
we conjecture that the optimum s is O(1)
and therefore the same complexity and
tolerance to errors is maintained.

8.3.7 Giegerich, Kurtz, Hischke, and Ohle-
busch (1996). Also in 1996, a general
method to improve filters was developed
[Giegerich et al. 1997]. The idea is to
mix the phases of filtering and checking,
so that the verification of a text area
is abandoned as soon as the combined
information from the filter (number of
guaranteed differences left) and the
verification in progress (number of actual
differences seen) shows that a match is
not possible. As they show, however, the
improvement occurs in a very narrow
area of α. This is a consequence of the
statistics of this problem that we have
discussed in Section 4.

9. EXPERIMENTS

In this section we make empirical compar-
isons among the algorithms described in
this work. Our goal is to show the best
options at hand depending on the case.
Nearly 40 algorithms have been surveyed,
some of them without existing implemen-
tations and many of them already known
to be impractical. To avoid excessively long
comparisons among algorithms known not
to be competitive, we have left many of
them aside.

9.1 Included and Excluded Algorithms

A large group of excluded algorithms is
from the theoretical side based on the
dynamic programming matrix. Although
these algorithms are not competitive in
practice, they represent (or represented
at their time) a valuable contribution
to the development of the algorithmic
aspect of the problem. The dynamic
programming algorithm [Sellers 1980] is
excluded because the cut-off heuristic of
Ukkonen [1985b] is known to be faster
(e.g. in Chang and Lampe [1992] and
in our internal tests); the Masek and
Paterson algorithm [1980] is argued in
the same paper to be worse than dynamic
programming (which is quite bad) for
n < 40 GB; Landau and Vishkin [1988]
has bad complexity and was improved
later by many others in theory and
practice; Landau and Vishkin [1989] is

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

A Guided Tour to Approximate String Matching 71

implemented with a better LCA algorithm
in Chang and Lampe [1992] and found
too slow; Myers [1986a] is considered
slow in practice by the same author in
Wu et al. [1996]; Galil and Giancarlo
[1988] is clearly slower than Landau and
Vishkin [1989]; Galil and Park [1990], one
of the fastest among the O(kn) worst case
algorithms, is shown to be extremely slow
in Ukkonen and Wood [1993], Chang and
Lampe [1992], and Wright [1994] and in
internal tests done by ourselves; Ukkonen
and Wood [1993] is shown to be slow in
Jokinen et al. [1996]; the O(kn) algorithm
implemented in Chang and Lawler [1994]
is in the same paper argued to be the
fastest of the group and shown to be not
competitive in practice; Sahinalp and
Vishkin [1997] and Cole and Hariharan
[1998] are clearly theoretical, their com-
plexities show that the patterns have to
be very long and the error level too low
to be of practical application. To give an
idea of how slow is “slow,” we found Galil
and Park [1990] 10 times slower than
Ukkonen’s cut-off heuristic (a similar
result is reported by Chang and Lampe
[1992]). Finally, other O(kn) average time
algorithms are proposed in Myers [1986a]
and Galil and Park [1990], and they are
shown to be very similar to Ukkonen’s
cut-off [Ukkonen 1985b] in Chang and
Lampe [1992]. Since the cut-off heuristic
is already not very competitive we leave
aside the other similar algorithms. There-
fore, from the group based on dynamic
programming we consider only the cut-off
heuristic (mainly as a reference) and
Chang and Lampe [1992], which is the
only one competitive in practice.

From the algorithms based on au-
tomata we consider the DFA algorithm
[Ukkonen 1985b], but prefer its lazy
version implemented in Navarro [1997b],
which is equally fast for small automata
and much faster for large automata. We
also consider the Four Russians algorithm
of Wu et al. [1996]. From the bit-parallel
algorithms we consider Wu and Manber
[1992b], Baeza-Yates and Navarro [1999],
and Myers [1999], leaving aside Wright
[1994]. As shown in the 1996 version
of Baeza-Yates and Navarro [1999], the

algorithm of Wright [1994] was compet-
itive only on binary text, and this was
shown to not hold anymore in Myers
[1999].

From the filtering algorithms, we have
included Tarhio and Ukkonen [1993];
the counting filter proposed in Jokinen
et al. [1996] (as simplified in Navarro
[1997a]); the algorithm of Navarro and
Raffinot [2000]; and those of Sutinen and
Tarhio [1995] and Takaoka [1994] (this
last seen as the case s = 1 of Sutinen and
Tarhio [1995], since this implementation
worked better). We have also included
the filters proposed in Baeza-Yates and
Navarro [1999], Navarro and Baeza-Yates
[1998a], and Navarro [1998], preferring
to present only the last version which
incorporates all the twists of superimpo-
sition, hierarchical verification and mixed
partitioning. Many previous versions
are outperformed by this one. We have
also included the best version of the
filters that partition the pattern in k+ 1
pieces, namely the one incorporating
hierarchical verification [Navarro and
Baeza-Yates 1999c; Navarro 1998]. In
those publications it is shown that this
version clearly outperforms the previous
ones proposed in Wu and Manber [1992b],
Baeza-Yates and Perleberg [1996], and
Baeza-Yates and Navarro [1999]. Finally,
we are discarding some filters [Chang and
Lawler 1994; Ukkonen 1992; Chang and
Marr 1994; Shi 1996] which are applica-
ble only to very long patterns, since this
case is excluded from our experiments
as explained shortly. Some comparisons
among them were carried out by Chang
and Lampe [1992], showing that LET is
equivalent to the cut-off algorithm with
k = 20, and that the time for SET is 2α
times that of LET. LET was shown to be
the fastest with patterns of a hundred
letters long and a few errors in Jokinen
et al. [1996], but we recall that many
modern filters were not included in that
comparison.

We now list the included algorithms
and the relevant comments about them.
All the algorithms implemented by us
represent our best coding effort and
have been found similar or faster than

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

72 G. Navarro

other implementations found elsewhere.
The implementations coming from other
authors were checked with the same
standards and in some cases their code
was improved with better register us-
age and I/O management. The number
in parenthesis following the name of
each algorithm is the number of lines
of the C implementation we use. This
gives a rough idea of how complex the
implementation of each algorithm is.

CTF (239) The cut-off heuristic of
Ukkonen [1985b] implemented by us.

CLP (429) The column partitioning algo-
rithm of Chang and Lampe [1992], im-
plemented by them. We replaced their
I/O by ours, which is faster.

DFA (291) The lazy deterministic automa-
ton of Navarro [1997b], implemented by
us.

RUS (304) The Four-Russians algorithm
of Wu et al. [1996], implemented by
them. We tried different r values (re-
lated to the time/space tradeoff) and
found that the best option is always
r = 5 in our machine.

BPR (229) The NFA bit-parallelized
by rows [Wu and Manber 1992b],
implemented by us and restricted to
m ≤ w. Separate code is used for k = 1,
2, 3 and k > 3. We could continue writ-
ing separate versions but decided that
this is reasonable up to k = 3, as at that
point the algorithm is not competitive
anyway.

BPD (249 – 1,224) The NFA bit-para-
llelized by diagonals [Baeza-Yates and
Navarro 1999], implemented by us.
Here we do not include any filtering
technique. The first number (249)
corresponds to the plain technique
and the second one (1,224) to handling
partitioned automata.

BPM (283 – 722) The bit-parallel imple-
mentation of the dynamic programming
matrix [Myers 1999], implemented by
that author. The two numbers have the
same meaning as in the previous item.

BMH (213) The adaptation of Horspool
to allow errors [Tarhio and Ukkonen
1993], implemented by them. We use

their algorithm 2 (which is faster), im-
prove some register usage and replace
their I/O by ours, which is faster.

CNT (387) The counting filter of Jokinen
et al. [1996], as simplified in Navarro
[1997a] and implemented by us.

EXP (877) Partitioning in k+ 1 pieces
plus hierarchical verification [Navarro
and Baeza-Yates 1999c; Navarro 1998],
implemented by us.

BPP (3,466) The bit-parallel algorithms
of Baeza-Yates and Navarro [1999],
Navarro and Baeza-Yates [1998a], and
Navarro [1998] using pattern partition-
ing, superimposition, and hierarchical
verification. The implementation is
ours and is packaged software that can
be downloaded from the Web page of
the author.

BND (375) The BNDM algorithm adapted
to allow errors in Navarro and Raffinot
[2000] and Navarro [1998] implemented
by us and restricted to m ≤ w. Separate
code is used for k = 1, 2, 3 and k > 3.
We could continue writing separate ver-
sions but decided that this is reasonable
up to k = 3.

QG2 (191) The q-gram filter of Sutinen
and Tarhio [1995], implemented by
them and used with s= 2 (since s= 1
is the algorithm [Takaoka 1994], see
next item; and s> 2 worked well only
for very long patterns). The code is
restricted to k ≤ w/2 − 3, and it is also
not run when q is found to be 1 since the
performance is very poor. We improved
register usage and replaced the I/O
management by our faster versions.

QG1 (191) The q-gram algorithm of
Takaoka [1994], run as the special case
s = 1 of the previous item. The same
restrictions on the code apply.

We did our best to uniformize the
algorithms. The I/O is the same in all
cases: the text is read in chunks of 64 KB
to improve locality (this is the optimum
in our machine) and care is taken to not
lose or repeat matches in the borders;
open is used instead of fopen because it
is slower. We also uniformize internal
conventions: only a final special character

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

A Guided Tour to Approximate String Matching 73

(zero) is used at the end of the buffer
to help algorithms recognize it; and
only the number of matches found is
reported.

In the experiments we separate the fil-
tering and nonfiltering algorithms. This is
because the filters can in general use any
nonfilter to check for potential matches, so
the best algorithm is formed by a combina-
tion of both. All the filtering algorithms in
the experiments use the cut-off algorithm
[Ukkonen 1985b] as their verification en-
gine, except for BPP (whose very essence
is to switch smoothly to BPD) and BND
(which uses a reverse BPR to search in the
window and a forward BPR for the verifi-
cations).

9.2 Experimental Setup

Apart from the algorithms and their de-
tails, we describe our experimental setup.
We measure CPU times and show the re-
sults in tenths of seconds per megabyte.
Our machine is a Sun UltraSparc-1 with
167 MHz and 64 MB in main memory, we
run Solaris 2.5.1 and the texts are on a lo-
cal disk of 2 GB. Our experiments were run
on texts of 10 MB and repeated 20 times
(with different search patterns). The same
patterns were used for all the algorithms.

In the applications, we have selected
three types of texts.

DNA: This file is formed by concatenating
the 1.34 MB DNA chain of h.influenzae
with itself until 10 MB is obtained.
Lines are cut at 60 characters. The
patterns are selected randomly from
the text, avoiding line breaks if possible.
The alphabet size is four, save for a few
exceptions along the file, and the res-
ults are similar to a random four-letter
text.

Natural language: This file is formed by
1.29 MB from the work of Benjamin
Franklin filtered to lower-case and
separators converted to a space (except
line breaks which are respected). This
mimics common information retrieval
scenarios. The text is replicated to
obtain 10 MB and search patterns are
randomly selected from the same text

at word beginnings. The results are
roughly equivalent to a random text
over 15 characters.

Speech:We obtained speech files from
discussions of U.S. law from Indiana
University, in PCM format with 8 bits
per sample. Of course, the standard edit
distance is of no use here, since it has to
take into account the absolute values of
the differences between two characters.
We simplified the problem in order to
use edit distance: we reduced the range
of values to 64 by quantization, consid-
ering two samples that lie in the same
range as equal. We used the first 10 MB
of the resulting file. The results are
similar to those on a random text of 50
letters, although the file shows smooth
changes from one letter to the next.

We present results using different pat-
tern lengths and error levels in two fla-
vors: we fix m and show the effect of in-
creasing k, or we fix α and show the effect
of increasing m. A given algorithm may
not appear at all in a plot when its times
are above the y range or its restrictions
on m and k do not intersect with the x
range. In particular, filters are shown only
for α ≤ 1/2. We remind readers that in
most applications the error levels of inter-
est are low.

9.3 Results

Figure 24 shows the results for short
patterns (m= 10) and varying k. In non-
filtering algorithms BPD is normally the
fastest, up to 30% faster than the next
one, BPM. The DFA is also quite close
in most cases. For k= 1, a specialized
version of BPR is slightly faster than
BPD (recall that for k> 3 BPR starts to
use a nonspecialized algorithm, hence
the jump). An exception occurs in DNA
text, where for k= 4 and k= 5, BPD
shows a nonmonotonic behavior and BPM
becomes the fastest. This behavior comes
from its O(k(m− k)n/w) complexity,11

11 Another reason for this behavior is that there are
integer round-off effects that produce nonmonotonic
results.

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

74 G. Navarro

Fig. 24 . Results for m = 10 and varying k. The left plots show nonfiltering and the right plots
show filtering algorithms. Rows 1–3 show DNA, English, and speech files, respectively.

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

A Guided Tour to Approximate String Matching 75

which in texts with larger alphabets is not
noticeable because the cut-off heuristic
keeps the cost unchanged. Indeed, the
behavior of BPD would have been totally
stable if we had chosen m= 9 instead of
m= 10, because the problem would fit
in a computer word all the time. BPM,
on the other hand, handles much longer
patterns, maintaining stability, although
it takes up to 50% more time than BPD.

With respect to filters, EXP is the
fastest for low error levels. The value of
“low” increases for larger alphabets. At
some point, BPP starts to dominate. BPP
adapts smoothly to higher error levels
by slowly switching to BPD, so BPP is a
good alternative for intermediate error
levels, where EXP ceases to work until
it switches to BPD. However, this range
is void on DNA and English text for
m= 10. Other filters competitive with
EXP are BND and BMH. In fact, BND
is the fastest for k= 1 on DNA, although
no filter works very well in that case.
Finally, QG2 does not appear because it
only works for k= 1 and it was worse than
QG1.

The best choice for short patterns seems
to be EXP while it works and switching
to the best bit-parallel algorithm for
higher errors. Moreover, the verification
algorithm for EXP should be BPR or
BPD (which are the fastest where EXP
dominates).

Figure 25 shows the case of longer pat-
terns (m= 30). Many of the observations
are still valid in this case. However, in
this case the algorithm BPM shows its
advantage over BPD, since the entire
problem still fits in a computer word for
BPM and it does not for BPD. Hence in
the left plots the best algorithm is BPM
except for low k, where BPR or BPD are
better. With respect to filters, EXP or
BND are the fastest, depending on the
alphabet, until a certain error level is
reached. At that point BPP becomes the
fastest, in some cases still faster than
BPM. Notice that for DNA a specialized
version of BND for k= 4 and even 5 could
be the fastest choice.

In Figure 26 we consider the case of
fixed α= 0.1 and growing m. The results

repeat somewhat those for nonfiltering
algorithms: BPR is the best for k= 1 (i.e.
m= 10), then BPD is the best until a
certain pattern length is reached (which
varies from 30 on DNA to 80 on speech),
and finally BPM becomes the fastest. Note
that for such a low error level the number
of active columns is quite small, which
permits algorithms like BPD and BPM
to keep their good behavior for patterns
much longer than what they could handle
in a single machine word. The DFA is
also quite competitive until its memory
requirements become unreasonable.

The real change, however, is in the
filters. In this case PEX becomes the star
filter in English and speech texts. The situ-
ation for DNA, on the other hand, is quite
complex. For m≤ 30, BND is the fastest,
and indeed an extended implementation
allowing longer patterns could keep it be-
ing the fastest for a few more points. How-
ever, that case would have to handle four
errors, and only a specialized implementa-
tion for fixed k= 4, 5,. . . . could maintain
a competitive performance. We have
determined that such specialized code is
worthwhile up to k= 3 only. When BND
ceases to be applicable, PEX becomes the
fastest algorithm, and finally QG2 beats
it (for m≥ 60). However, notice that for
m> 30, all the filters are beaten by BPM
and therefore make little sense (on DNA).

There is a final phenomenon that
deserves mention with respect to filters.
The algorithms QG1 and QG2 improve as
m grows. These algorithms are the most
practical, and the only ones we tested in
the family of algorithms suitable for very
long patterns. Thus, although all these
algorithms would not be competitive in
our tests (where m≤ 100), they should
be considered in scenarios where the
patterns are much longer and the error
level is kept very low. In such a scenario,
those algorithms would finally beat all
the algorithms we consider here.

The situation becomes worse for the
filters when we consider α = 0.3 and
varying m (Figure 27). On DNA, no filter
can beat the nonfiltering algorithms, and
among them the tricks to maintain a few
active columns do not work well. This

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

76 G. Navarro

Fig. 25 . Results for m = 30 and varying k. The left plots show nonfiltering and the right plots
show filtering algorithms. Rows 1–3 show DNA, English and speech files, respectively.

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

A Guided Tour to Approximate String Matching 77

Fig. 26 . Results for α = 0.1 and varying m. The left plots show nonfiltering and the right plots
show filtering algorithms. Rows 1–3 show DNA, English and speech files, respectively.

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

78 G. Navarro

Fig. 27 . Results for α = 0.3 and varying m. The left plots show nonfiltering and the right plots
show filtering algorithms. Rows 1–3 show DNA, English and speech files, respectively.

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

A Guided Tour to Approximate String Matching 79

Fig. 28 . The areas where each algorithm is the best; gray is that of filtering algorithms.

favors the algorithms that pack more in-
formation per bit, which makes BPM the
best in all cases except for m= 10 (where
BPD is better). The situation is almost
the same on English text, except that
BPP works reasonably well and becomes
quite similar to BPM (the periods where
each one dominates are interleaved). On
speech, on the other hand, the scenario is
similar to that for nonfiltering algorithms,
but the PEX filter still beats all of them,
as 30% of errors is low enough on the
speech files. Note in passing that the error
level is too high for QG1 and QG2, which
can only be applied in a short range and
yield bad results.

To give an idea of the areas where each
algorithm dominates, Figure 28 shows the
case of English text. There is more infor-
mation in Figure 28 than can be inferred
from previous plots, such as the area
where RUS is better than BPM. We have
shown the nonfiltering algorithms and su-
perimposed in gray the area where the fil-
ters dominate. Therefore, in the gray area
the best choice is to use the corresponding
filter using the dominating nonfilter as its
verification engine. In the nongray area it
is better to use the dominating nonfilter-
ing algorithm directly, with no filter.

A code implementing such a heuristic
(including EXP, BPD and BPP only) is
publicly available from the author’s Web

page.12 This combined code is faster
than each isolated algorithm, although of
course it is not really a single algorithm
but the combination of the best choices.

10. CONCLUSIONS

We reach the end of this tour on approxi-
mate string matching. Our goal has been
to present and explain the main ideas
behind the existing algorithms, to classify
them according to the type of approach
proposed, and to show how they perform
in practice in a subset of possible prac-
tical scenarios. We have shown that the
oldest approaches, based on the dynamic
programming matrix, yield the most
important theoretical developments, but
in general the algorithms have been
improved by modern developments based
on filtering and bit-parallelism. In par-
ticular, the fastest algorithms combine a
fast filter to discard most of the text with
a fast nonfilter algorithm to check for
potential matches.

We show some plots summarizing the
contents of the survey. Figure 29 shows
the historical order in which the algo-
rithms appeared in the different areas.

12 http://www.dcc.uchile.cl/∼gnavarro/pubcode.
To apply EXP the option-ep must be used.

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

80 G. Navarro

Fig. 29 . Historical development of the different areas. References are shortened to first letters
(single authors) or initials (multiple authors), and to the last two digits of years.
Key: Sel80 = [Sellers 1980], MP80 = [Masek and Paterson 1980], LV88 = [Landau and Vishkin
1988], Ukk85b= [Ukkonen 1985b], LV89= [Landau and Vishkin 1989], Mye86a= [Myers 1986a],
GG88 = [Galil and Giancarlo 1988], GP90 = [Galil and Park 1990], CL94 = [Chang and Lawler
1994], UW93= [Ukkonen and Wood 1993], TU93= [Tarhio and Ukkonen 1993], JTU96= [Jokinen
et al. 1996], CL92 = [Chang and Lampe 1992], WMM96 = [Wu et al. 1996], WM92b = [Wu and
Manber 1992b], BYP96 = [Baeza-Yates and Perleberg 1996], Ukk92 = [Ukkonen 1992], Wri94 =
[Wright 1994], CM94 = [Chang and Marr 1994], Tak94 = [Takaoka 1994], Mel96 = [Melichar
1996], ST95 = [Sutinen and Tarhio 1995], Kur96 = [Kurtz 1996], BYN99 = [Baeza-Yates and
Navarro 1999], Shi96 = [Shi 1996], GKHO97 = [Giegerich et al. 1997], SV97 = [Sahinalp and
Vishkin 1997], Nav97a = [Navarro 1997a], CH98 = [Cole and Hariharan 1998], Mye99 = [Myers
1999], NBY98a & NBY99b = [Navarro and Baeza-Yates 1998a; 1999b], and NR00 = [Navarro and
Raffinot 2000].

Figure 30 shows a worst case time/space
complexity plot for the nonfiltering al-
gorithms. Figure 31 considers filtration
algorithms, showing their average case
complexity and the maximum error level
α for which they work. Some practical
assumptions have been made to order the
different functions of k, m, σ , w, and n.

Approximate string matching is a
very active research area, and it should
continue in that status in the foreseeable

future: strong genome projects in com-
putational biology, the pressure for oral
human-machine communication and the
heterogeneity and spelling errors present
in textual databases are just a sample of
the reasons that drive researchers to look
for faster and more flexible algorithms for
approximate pattern matching.

It is interesting to point out theoreti-
cal and practical questions that are still
open.

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

A Guided Tour to Approximate String Matching 81

Fig. 30 . Worst case time and space complexity of nonfiltering algorithms. We replaced w by
2(log n). References are shortened to first letters (single authors) or initials (multiple authors),
and to the last two digits of years.
Key: Sel80 = [Sellers 1980], LV88 = [Landau and Vishkin 1988], WM92b = [Wu and Manber
1992b], GG88 = [Galil and Giancarlo 1988], UW93 = [Ukkonen and Wood 1993], GP90 = [Galil
and Park 1990], CL94 = [Chang and Lawler 1994], Mye86a = [Myers 1986a], LV89 = [Landau
and Vishkin 1989], CH98 = [Cole and Hariharan 1998], BYN99 = [Baeza-Yates and Navarro
1999], Mye99 = [Myers 1999], WMM96 = [Wu et al. 1996], MP80 = [Masek and Paterson 1980],
and Ukk85a = [Ukkonen 1985a].

—The exact matching probability and av-
erage edit distance between two random
strings is a difficult open question. We
found a new bound in this survey, but
the problem is still open.

—A worst-case lower bound of the
problem is clearly O(n), but the only
algorithms achieving it have space and
preprocessing cost exponential in m or
k. The only improvements to the worst
case with polynomial space complexity
are the O(kn) algorithms and, for very
small k, O(n(1+ k4/m)). Is it possible
to improve the algorithms or to find a
better lower bound for this case?

—The previous question also has a
practical side: Is it possible to find an

algorithm which is O(kn) in the worst
case and efficient in practice? Using bit-
parallelism, there are good practical al-
gorithms that achieve O(kn/w) on aver-
age and O(mn/w) in the worst case.

—The lower bound of the problem for
the average case is known to be
O(n(k+ logσ m)/m), and there exists
an algorithm achieving it, so from the
theoretical point of view that problem
is closed. However, from the practical
side, the algorithms approaching those
limits work well only for very long pat-
terns, while a much simpler algorithm
(EXP) is the best for moderate and
short patterns. Is it possible to find a
unified approach, good in practice and
with that theoretical complexity?

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

82 G. Navarro

Fig. 31 . Average time and maximum tolerated error level for the filtration algorithms. References
are shortened to first letters (single authors) or initials (multiple authors), and to the last two digits
of years.
Key: BYN99 = [Baeza-Yates and Navarro 1999], NBY98a = [Navarro and Baeza-Yates 1998a],
JTU96= [Jokinen et al. 1996], Ukk92= [Ukkonen 1992], CL94= [Chang and Lawler 1994], WM92b=
[Wu and Manber 1992b], TU93 = [Tarhio and Ukkonen 1993], Tak94 = [Takaoka 1994], Shi96 = [Shi
1996], ST95 = [Sutinen and Tarhio 1995], NR00 = [Navarro and Raffinot 2000], and CM94 = [Chang
and Marr 1994].

—Another practical question on filtering
algorithms is: Is it possible in practice to
improve over the current best existing
algorithms?

—Finally, there are many other open
questions related to offline approxi-
mate searching, which is a much less
mature area needing more research.

APPENDIX A. SOME ANALYSES

Since some of the source papers lack an
analysis, or they do not analyze exactly
what is of interest to us, we provide a sim-
ple analysis. This is not the purpose of

this survey, so we content ourselves with
rough figures. In particular, our analyses
are valid for σ <<m. All refer to filters
and are organized according to the original
order, so the reader should first read the
algorithm description to understand the
terminology.

A.1 Tarhio and Ukkonen (1990)

First, the probability of a text charac-
ter being “bad” is that of not matching
2k+ 1 pattern positions, i.e. Pbad=
(1− 1/σ)2k+ 1≈ ē−(2k+ 1)/σ , so we try on
average 1/Pbad characters until we find
a bad one. Since k+ 1 bad characters

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

A Guided Tour to Approximate String Matching 83

have to be found, we make O(k/Pbad)
leave the window. On the other hand, the
probability of verifying a text window
is that of reaching its beginning. We
approximate that probability by equating
m to the average portion of the traversed
window (k/Pbad), to obtain α < ē−(2k+ 1)/σ .

A.2 Wu and Manber (1992)

The Sunday algorithm can be analyzed as
follows. To see how far we can verify in
the current window, consider that (k+ 1)
patterns have to fail. Each one fails
on average in logσ (m/(k+ 1)) character
comparisons, but the time for all them to
fail is longer. By Yao’s bound [Yao 1979],
this cannot be less than logσ m. Otherwise
we could split the test of a single pattern
into (k+ 1) tests of subpatterns, and all of
them would fail in less than logσ m time,
breaking the lower bound. To compute the
average shift, consider that k characters
must be different from the last window
character, and therefore the average shift
is σ/k. The final complexity is therefore
O(kn logσ (m)/σ). This is optimistic, but
we conjecture that it is the correct com-
plexity. An upper bound is obtained by
replacing k by k2 (i.e. adding the times for
all the pieces to fail).

A.3 Navarro and Raffinot (1998)

The automaton matches the text window
with k errors until almost surely k/α∗
characters have been inspected (so that
the error level becomes lower than α∗).
From there on, it becomes exponentially
decreasing on γ , which can be made
1/σ in O(k) total steps. From that point
on, we are in a case of exact string
matching and then logσ m characters are
inspected, for a total of O(k/α∗ + logσ m).
When the window is shifted to the last
prefix that matched with k errors, this
is also at k/α∗ distance from the end
of the window, on average. The window
length is m− k, and therefore we shift
the window in m− k− k/α∗ on average.
Therefore, the total amount of work is
O(n(α+α∗ logσ (m)/m)/((1−α)α∗−α)). The
filter works well unless the probability

of finding a pattern prefix with errors at
the beginning of the window is high. This
is the same as saying that k/α∗ =m− k,
which gives α < (1− ē/

√
σ)/(2− ē/

√
σ).

A.4 Ukkonen (1992)

The probability of finding a given q-gram
in the text window is 1 − (1 − 1/σ q)m ≈
1 − e−m/σ q

. So the probability of verifying
the text position is that of finding
(m−q+ 1−kq) q-grams of the pattern, i.e.(m−q+ 1

kq

)
(1 − e−m/σ q

)m−q+ 1−kq . This must
be O(1/m2) in order not to interfere with
the search time. Taking logarithms and
approximating the combinatorials using
Stirling’s n! = (n/ē)n

√
2πn(1+O(1/n)),

we arrive at

2 logσ m

kq <
+ (m− q + 1) logσ

(
1− e−m/σ q)

logσ
(
1− e−m/σ q

)
+ logσ (kq)− logσ (m− q + 1)

from which, by replacing q = logσ m, we
obtain

α <
1

logσ m(logσ α + logσ logσ m)

= O
(

1
logσ m

)
a quite common result for this type of fil-
ter. The q = logσ m is chosen because the
result improves as q grows, but it is nec-
essary that q ≤ logσ m holds, since other-
wise logσ (1− ē−m/σ q

) becomes zero and the
result worsens.

ACKNOWLEDGMENTS

The author thanks the many researchers in this
area for their willingness to exchange ideas and/or
share their implementations: Amihood Amir,
Ricardo Baeza-Yates, William Chang, Udi Manber,
Gene Myers, Erkki Sutinen, Tadao Takaoka, Jorma
Tarhio, Esko Ukkonen, and Alden Wright. The
referees also provided important suggestions that
improved the presentation.

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

84 G. Navarro

REFERENCES

AHO, A. AND CORASICK, M. 1975. Efficient string
matching: an aid to bibliographic search. Com-
mun. ACM 18, 6, 333–340.

AHO, A., HOPCROFT, J., AND ULLMAN, J. 1974. The
Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, MA.

ALTSCHUL, S., GISH, W., MILLER, W., MYERS, G., AND

LIPMAN, D. 1990. Basic local alignment search
tool. J. Mol. Biol. 215, 403–410.

AMIR, A., LEWENSTEIN, M., AND LEWENSTEIN, N. 1997a.
Pattern matching in hypertext. In Proceedings
of the 5th International Workshop on Algo-
rithms and Data Structures (WADS ’97). LNCS,
vol. 1272, Springer-Verlag, Berlin, 160–173.

AMIR, A., AUMANN, Y., LANDAU, G., LEWENSTEIN, M.,
AND LEWENSTEIN, N. 1997b. Pattern matching
with swaps. In Proceedings of the Foundations
of Computer Science (FOCS’97), 1997, 144–
153.

APOSTOLICO, A. 1985. The myriad virtues of subword
trees. In Combinatorial Algorithms on Words.
Springer-Verlag, Barlin, 85–96.

APOSTOLICO, A. AND GALIL, Z. 1985. Combinato-
rial Algorithms on Words. NATO ISI Series.
Springer-Verlag, Berlin.

APOSTOLICO, A. AND GALIL, Z. 1997. Pattern Match-
ing Algorithms. Oxford University Press, Ox-
ford, UK.

APOSTOLICO, A. AND GUERRA, C. 1987. The Longest
Common Subsequence problem revisited. Algo-
rithmica 2, 315–336.

ARAÚJO, M., NAVARRO, G., AND ZIVIANI, N. 1997. Large
text searching allowing errors. In Proceedings of
the 4th South American Workshop on String Pro-
cessing (WSP ’97), Carleton Univ. Press. 2–20.

ARLAZAROV, V., DINIC, E., KONROD, M., AND FARADZEV,
I. 1975. On economic construction of the tran-
sitive closure of a directed graph. Sov. Math.
Dokl. 11, 1209, 1210. Original in Russian in
Dokl. Akad. Nauk SSSR 194, 1970.

ATALLAH, M., JACQUET, P., AND SZPANKOWSKI, W. 1993.
A probabilistic approach to pattern matching
with mismatches. Random Struct. Algor. 4, 191–
213.

BAEZA-YATES, R. 1989. Efficient Text Searching.
Ph.D. thesis, Dept. of Computer Science, Univer-
sity of Waterloo. Also as Res. Rep. CS-89-17.

BAEZA-YATES, R. 1991. Some new results on approx-
imate string matching. In Workshop on Data
Structures, Dagstuhl, Germany. Abstract.

BAEZA-YATES, R. 1992. Text retrieval: Theory and
practice. In 12th IFIP World Computer Congress.
Elsevier Science, Amsterdam. vol. I, 465–476.

BAEZA-YATES, R. 1996. A unified view of string
matching algorithms. In Proceedings of the The-
ory and Practice of Informatics (SOFSEM ’96).
LNCS, vol. 1175, Springer-Verlag, Berlin, 1–15.

BAEZA-YATES, R. AND GONNET, G. 1992. A new ap-
proach to text searching. Commun. ACM 35, 10,

74–82. Preliminary version in ACM SIGIR
’89.

BAEZA-YATES, R. AND GONNET, G. 1994. Fast string
matching with mismatches. Information and
Computation 108, 2, 187–199. Preliminary
version as Tech. Rep. CS-88-36, Data Structur-
ing Group, Univ. of Waterloo, Sept. 1988.

BAEZA-YATES, R. AND NAVARRO, G. 1997. Multiple ap-
proximate string matching. In Proceedings of the
5th International Workshop on Algorithms and
Data Structures (WADS ’97). LNCS, vol. 1272,
1997, Springer-Verlag, Berlin, 174–184.

BAEZA-YATES, R. AND NAVARRO, G. 1998. New and
faster filters for multiple approximate string
matching. Tech. Rep. TR/DCC-98-10, Dept.
of Computer Science, University of Chile.
Random Struct. Algor. to appear. ftp://ftp.
dcc.ptuchile.cl/pub/users/gnavarro/multi.
ps.gz.

BAEZA-YATES, R. AND NAVARRO, G. 1999. Faster ap-
proximate string matching. Algorithmica 23, 2,
127–158. Preliminary versions in Proceedings of
CPM ’96 (LNCS, vol. 1075, 1996) and in Proceed-
ings of WSP’96, Carleton Univ. Press, 1996.

BAEZA-YATES, R. AND NAVARRO, G. 2000. Block-
addressing indices for approximate text re-
trieval. J. Am. Soc. Inf. Sci. (JASIS) 51, 1 (Jan.),
69–82.

BAEZA-YATES, R. AND PERLEBERG, C. 1996. Fast and
practical approximate pattern matching. Infor-
mation Processing Letters 59, 21–27. Prelimi-
nary version in CPM ’92 (LNCS, vol. 644. 1992).

BAEZA-YATES, R. AND RÉGNIER, M. 1990. Fast algo-
rithms for two dimensional and multiple pattern
matching. In Proceedings of Scandinavian Work-
shop on Algorithmic Theory (SWAT ’90). LNCS,
vol. 447, Springer-Verlag, Berlin, 332–347.

BAEZA-YATES, R. AND RIBEIRO-NETO, B. 1999. Modern
Information Retrieval. Addison-Wesley, Read-
ing, MA.

BLUMER, A., BLUMER, J., HAUSSLER, D., EHRENFEUCHT,
A., CHEN, M., AND SEIFERAS, J. 1985. The smal-
lest automaton recognizing the subwords of a
text. Theor. Comput. Sci. 40, 31–55.

BOYER, R. AND MOORE, J. 1977. A fast string search-
ing algorithm. Commun. ACM 20, 10, 762–772.

CHANG, W. AND LAMPE, J. 1992. Theoretical and
empirical comparisons of approximate string
matching algorithms. In Proceedings of the 3d
Annual Symposium on Combinatorial Pattern
Matching (CPM ’92). LNCS, vol. 644, Springer-
Verlag, Berlin, 172–181.

CHANG, W. AND LAWLER, E. 1994. Sublinear approx-
imate string matching and biological applica-
tions. Algorithmica 12, 4/5, 327–344. Prelimi-
nary version in FOCS ’90.

CHANG, W. AND MARR, T. 1994. Approximate string
matching and local similarity. In Proceedings of
the 5th Annual Symposium on Combinatorial
Pattern Matching (CPM ’94). LNCS, vol. 807,
Springer-Verlag, Berlin, 259–273.

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

A Guided Tour to Approximate String Matching 85

CHVÁTAL, V. AND SANKOFF, D. 1975. Longest com-
mon subsequences of two random sequences.
J. Appl. Probab. 12, 306–315.

COBBS, A. 1995. Fast approximate matching using
suffix trees. In Proceedings of the 6th Annual
Symposium on Combinatorial Pattern Matching
(CPM ’95), 41–54.

COLE, R. AND HARIHARAN, R. 1998. Approximate
string matching: a simpler faster algorithm. In
Proceedings of the 9th ACM-SIAM Symposium
on Discrete Algorithms (SODA ’98), 463–472.

COMMENTZ-WALTER, B. 1979. A string matching al-
gorithm fast on the average. In Proc. ICALP ’79.
LNCS, vol. 6, Springer-Verlag, Berlin, 118–132.

CORMEN, T., LEISERSON, C., AND RIVEST, R. 1990. Intro-
duction to Algorithms. MIT Press, Cambridge,
MA.

CROCHEMORE, M. 1986. Transducers and repeti-
tions. Theor. Comput. Sci. 45, 63–86.

CROCHEMORE, M. AND RYTTER, W. 1994. Text Algo-
rithms. Oxford Univ. Press, Oxford, UK.

CROCHEMORE, M., CZUMAJ, A., GASIENIEC, L., JAROMINEK,
S., LECROQ, T., PLANDOWSKI, W., AND RYTTER, W.
1994. Speeding up two string-matching algo-
rithms. Algorithmica 12, 247–267.

DAMERAU, F. 1964. A technique for computer detec-
tion and correction of spelling errors. Commun.
ACM 7, 3, 171–176.

DAS, G., FLEISHER, R., GASIENIEK, L., GUNOPULOS,
D., AND KÄRKÄINEN, J. 1997. Episode matching.
In Proceedings of the 8th Annual Symposium
on Combinatorial Pattern Matching (CPM ’97).
LNCS, vol. 1264, Springer-Verlag, Berlin, 12–27.

DEKEN, J. 1979. Some limit results for longest com-
mon subsequences. Discrete Math. 26, 17–31.

DIXON, R. AND MARTIN, T. Eds. 1979. Automatic
Speech and Speaker Recognition. IEEE Press,
New York.

EHRENFEUCHT, A. AND HAUSSLER, D. 1988. A new dis-
tance metric on strings computable in linear
time. Discrete Appl. Math. 20, 191–203.

ELLIMAN, D. AND LANCASTER, I. 1990. A review of seg-
mentation and contextual analysis techniques
for text recognition. Pattern Recog. 23, 3/4, 337–
346.

FRENCH, J., POWELL, A., AND SCHULMAN, E. 1997. Ap-
plications of approximate word matching in in-
formation retrieval. In Proceedings of the 6th
ACM International Conference on Information
and Knowledge Management (CIKM ’97), 9–15.

GALIL, Z. AND GIANCARLO, R. 1988. Data structures
and algorithms for approximate string match-
ing. J. Complexity 4, 33–72.

GALIL, Z. AND PARK, K. 1990. An improved algo-
rithm for approximate string matching. SIAM
J. Comput. 19, 6, 989–999. Preliminary version
in ICALP ’89 (LNCS, vol. 372, 1989).

GIEGERICH, R., KURTZ, S., HISCHKE, F., AND OHLEBUSCH,
E. 1997. A general technique to improve filter

algorithms for approximate string matching. In
Proceedings of the 4th South American Work-
shop on String Processing (WSP ’97). Carleton
Univ. Press. 38–52. Preliminary version as
Tech. Rep. 96-01, Universität Bielefeld, Ger-
many, 1996.

GONNET, G. 1992. A tutorial introduction to Compu-
tational Biochemistry using Darwin. Tech. rep.,
Informatik E. T. H., Zuerich, Switzerland.

GONNET, G. AND BAEZA-YATES, R. 1991. Handbook of
Algorithms and Data Structures, 2d ed. Addison-
Wesley, Reading, MA.

GONZÁLEZ, R. AND THOMASON, M. 1978. Syntactic Pat-
tern Recognition. Addison-Wesley, Reading, MA.

GOSLING, J. 1991. A redisplay algorithm. In Proceed-
ings of ACM SIGPLAN/SIGOA Symposium on
Text Manipulation, 123–129.

GROSSI, R. AND LUCCIO, F. 1989. Simple and efficient
string matching with k mismatches. Inf. Process.
Lett. 33, 3, 113–120.

GUSFIELD, D. 1997. Algorithms on Strings, Trees and
Sequences. Cambridge Univ. Press, Cambridge.

HALL, P. AND DOWLING, G. 1980. Approximate string
matching. ACM Comput. Surv. 12, 4, 381–402.

HAREL, D. AND TARJAN, E. 1984. Fast algorithms
for finding nearest common ancestors. SIAM J.
Comput. 13, 2, 338–355.

HECKEL, P. 1978. A technique for isolating differ-
ences between files. Commun. ACM 21, 4, 264–
268.

HOLSTI, N. AND SUTINEN, E. 1994. Approximate
string matching using q-gram places. In Pro-
ceedings of 7th Finnish Symposium on Computer
Science. Univ. of Joensuu. 23–32.

HOPCROFT, J. AND ULLMAN, J. 1979. Introduction to
Automata Theory, Languages and Computation.
Addison-Wesley, Reading, MA.

HORSPOOL, R. 1980. Practical fast searching in
strings. Software Practice Exper. 10, 501–506.

JOKINEN, P. AND UKKONEN, E. 1991. Two algorithms
for approximate string matching in static texts.
In Proceedings of the 2nd Mathematical Founda-
tions of Computer Science (MFCS ’91). Springer-
Verlag, Berlin, vol. 16, 240–248.

JOKINEN, P., TARHIO, J., AND UKKONEN, E. 1996. A com-
parison of approximate string matching algo-
rithms. Software Practice Exper. 26, 12, 1439–
1458. Preliminary version in Tech. Rep. A-1991-
7, Dept. of Computer Science, Univ. of Helsinki,
1991.

KARLOFF, H. 1993. Fast algorithms for approx-
imately counting mismatches. Inf. Process.
Lett. 48, 53–60.

KECECIOGLU, J. AND SANKOFF, D. 1995. Exact and
approximation algorithms for the inversion
distance between two permutations. Algorith-
mica 13, 180–210.

KNUTH, D. 1973. The Art of Computer Pro-
gramming, Volume 3: Sorting and Searching.
Addison-Wesley, Reading, MA.

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

86 G. Navarro

KNUTH, D., MORRIS, J., JR, AND PRATT, V. 1977. Fast
pattern matching in strings. SIAM J. Com-
put. 6, 1, 323–350.

KUKICH, K. 1992. Techniques for automatically cor-
recting words in text. ACM Comput. Surv. 24, 4,
377–439.

KUMAR, S. AND SPAFFORD, E. 1994. A pattern-
matching model for intrusion detection. In Pro-
ceedings of the National Computer Security Con-
ference, 11–21.

KURTZ, S. 1996. Approximate string searching un-
der weighted edit distance. In Proceedings of the
3rd South American Workshop on String Pro-
cessing (WSP ’96). Carleton Univ. Press. 156–
170.

KURTZ, S. AND MYERS, G. 1997. Estimating the prob-
ability of approximate matches. In Proceedings
of the 8th Annual Symposium on Combinatorial
Pattern Matching (CPM ’97). LNCS, vol. 1264,
Springer-Verlag, Berlin, 52–64.

LANDAU, G. AND VISHKIN, U. 1988. Fast string match-
ing with k differences. J. Comput. Syst. Sci. 37,
63–78. Preliminary version in FOCS ’85.

LANDAU, G. AND VISHKIN, U. 1989. Fast parallel and
serial approximate string matching. J. Algor. 10,
157–169. Preliminary version in ACM STOC ’86.

LANDAU, G., MYERS, E., AND SCHMIDT, J. 1998. In-
cremental string comparison. SIAM J. Com-
put. 27, 2, 557–582.

LAWRENCE, S. AND GILES, C. L. 1999. Accessibility of
information on the web. Nature 400, 107–109.

LEE, J., KIM, D., PARK, K., AND CHO, Y. 1997. Effi-
cient algorithms for approximate string match-
ing with swaps. In Proceedings of the 8th Annual
Symposium on Combinatorial Pattern Matching
(CPM ’97). LNCS, vol. 1264, Springer-Verlag,
Berlin, 28–39.

LEVENSHTEIN, V. 1965. Binary codes capable of cor-
recting spurious insertions and deletions of ones.
Probl. Inf. Transmission 1, 8–17.

LEVENSHTEIN, V. 1966. Binary codes capable of cor-
recting deletions, insertions and reversals. Sov.
Phys. Dokl. 10, 8, 707–710. Original in Russian
in Dokl. Akad. Nauk SSSR 163, 4, 845–848,
1965.

LIPTON, R. AND LOPRESTI, D. 1985. A systolic ar-
ray for rapid string comparison. In Proceedings
of the Chapel Hill Conference on VLSI, 363–
376.

LOPRESTI, D. AND TOMKINS, A. 1994. On the search-
ability of electronic ink. In Proceedings of the
4th International Workshop on Frontiers in
Handwriting Recognition, 156–165.

LOPRESTI, D. AND TOMKINS, A. 1997. Block edit mod-
els for approximate string matching. Theor.
Comput. Sci. 181, 1, 159–179.

LOWRANCE, R. AND WAGNER, R. 1975. An exten-
sion of the string-to-string correction problem.
J. ACM 22, 177–183.

LUCZAK, T. AND SZPANKOWSKI, W. 1997. A suboptimal
lossy data compression based on approximate

pattern matching. IEEE Trans. Inf. Theor. 43,
1439–1451.

MANBER, U. AND WU, S. 1994. GLIMPSE: A tool to
search through entire file systems. In Proceed-
ings of USENIX Technical Conference. USENIX
Association, Berkeley, CA, USA. 23–32. Prelim-
inary version as Tech. Rep. 93-34, Dept. of Com-
puter Science, Univ. of Arizona, Oct. 1993.

MASEK, W. AND PATERSON, M. 1980. A faster algo-
rithm for computing string edit distances. J.
Comput. Syst. Sci. 20, 18–31.

MASTERS, H. 1927. A study of spelling errors. Univ.
of Iowa Studies in Educ. 4, 4.

MCCREIGHT, E. 1976. A space-economical suffix tree
construction algorithm. J. ACM 23, 2, 262–
272.

MELICHAR, B. 1996. String matching with k differ-
ences by finite automata. In Proceedings of the
International Congress on Pattern Recognition
(ICPR ’96). IEEE CS Press, Silver Spring, MD.
256–260. Preliminary version in Computer Anal-
ysis of Images and Patterns (LNCS, vol. 970,
1995).

MORRISON, D. 1968. PATRICIA—Practical algo-
rithm to retrieve information coded in alphanu-
meric. J. ACM 15, 4, 514–534.

MUTH, R. AND MANBER, U. 1996. Approximate mul-
tiple string search. In Proceedings of the 7th
Annual Symposium on Combinatorial Pattern
Matching (CPM ’96). LNCS, vol. 1075, Springer-
Verlag, Berlin, 75–86.

MYERS, G. 1994a. A sublinear algorithm for approx-
imate keyword searching. Algorithmica 12, 4/5,
345–374. Perliminary version in Tech. Rep.
TR90-25, Computer Science Dept., Univ. of Ari-
zona, Sept. 1991.

MYERS, G. 1994b. Algorithmic Advances for Search-
ing Biosequence Databases. Plenum Press, New
York, 121–135.

MYERS, G. 1986a. Incremental alignment algo-
rithms and their applications. Tech. Rep. 86–22,
Dept. of Computer Science, Univ. of Arizona.

MYERS, G. 1986b. An O(N D) difference algorithm
and its variations. Algorithmica 1, 251–266.

MYERS, G. 1991. An overview of sequence compari-
son algorithms in molecular biology. Tech. Rep.
TR-91-29, Dept. of Computer Science, Univ. of
Arizona.

MYERS, G. 1999. A fast bit-vector algorithm for ap-
proximate string matching based on dynamic
progamming. J. ACM 46, 3, 395–415. Earlier ver-
sion in Proceedings of CPM ’98 (LNCS, vol. 1448).

NAVARRO, G. 1997a. Multiple approximate string
matching by counting. In Proceedings of the 4th
South American Workshop on String Processing
(WSP ’97). Carleton Univ. Press, 125–139.

NAVARRO, G. 1997b. A partial deterministic automa-
ton for approximate string matching. In Pro-
ceedings of the 4th South American Workshop
on String Processing (WSP ’97). Carleton Univ.
Press, 112–124.

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

A Guided Tour to Approximate String Matching 87

NAVARRO, G. 1998. Approximate Text Searching.
Ph.D. thesis, Dept. of Computer Science, Univ. of
Chile. Tech. Rep. TR/DCC-98-14. ftp://ftp.
dcc.uchile.cl/pub/users/gnavarro/thesis98.
ps.gz.

NAVARRO, G. 2000a. Improved approximate pattern
matching on hypertext. Theor. Comput. Sci.,
237, 455–463. Previous version in Proceedings
of LATIN ’98 (LNCS, vol. 1380).

NAVARRO, G. 2000b. Nrgrep: A fast and flexible pat-
tern matching tool, Tech. Rep. TR/DCC-2000-3.
Dept. of Computer Science, Univ. of Chile, Aug.
ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/
nrgrep.ps.gz.

NAVARRO, G. AND BAEZA-YATES, R. 1998a. Im-
proving an algorithm for approximate
pattern matching. Tech. Rep. TR/DCC-
98-5, Dept. of Computer Science, Univ.
of Chile. Algorithmica, to appear. ftp://
ftp.dcc.uchile.cl/pub/users/gnavarro/dexp.
ps.gz.

NAVARRO, G. AND BAEZA-YATES, R. 1998b. A practical
q-gram index for text retrieval allowing errors.
CLEI Electron. J. 1, 2. http://www.clei.cl.

NAVARRO, G. AND BAEZA-YATES, R. 1999a. Fast multi-
dimensional approximate pattern matching. In
Proceedings of the 10th Annual Symposium
on Combinatorial Pattern Matching (CPM ’99).
LNCS, vol. 1645, Springer-verlag, Berlin, 243–
257. Extended version to appear in J. Disc. Algor.
(JDA).

NAVARRO, G. AND BAEZA-YATES, R. 1999b. A new in-
dexing method for approximate string matching.
In Proceedings of the 10th Annual Symposium
on Combinatorial Pattern Matching (CPM ’99),
LNCS, vol. 1645, Springer-verlag, Berlin, 163–
185. Extended version to appear in J. Discrete
Algor. (JDA).

NAVARRO, G. AND BAEZA-YATES, R. 1999c. Very fast
and simple approximate string matching. Inf.
Process. Lett. 72, 65–70.

NAVARRO, G. AND RAFFINOT, M. 2000. Fast and flexible
string matching by combining bit-parallelism
and suffix automata. ACM J. Exp. Algor. 5, 4.
Previous version in Proceedings of CPM ’98.
Lecture Notes in Computer Science, Springer-
Verlag, New York.

NAVARRO, G., MOURA, E., NEUBERT, M., ZIVIANI, N., AND

BAEZA-YATES, R. 2000. Adding compression to
block addressing inverted indexes. Kluwer Inf.
Retrieval J. 3, 1, 49–77.

NEEDLEMAN, S. AND WUNSCH, C. 1970. A general
method applicable to the search for similarities
in the amino acid sequences of two proteins. J.
Mol. Biol. 48, 444–453.

NESBIT, J. 1986. The accuracy of approximate string
matching algorithms. J. Comput.-Based In-
str. 13, 3, 80–83.

OWOLABI, O. AND MCGREGOR, R. 1988. Fast approx-
imate string matching. Software Practice Ex-
per. 18, 4, 387–393.

RÉGNIER, M. AND SZPANKOWSKI, W. 1997. On the
approximate pattern occurrence in a text. In
Proceedings of Compression and Complexity of
SEQUENCES ’97. IEEE Press, New York.

RIVEST, R. 1976. Partial-match retrieval algorithms.
SIAM J. Comput. 5, 1.

SAHINALP, S. AND VISHKIN, U. 1997. Approximate pat-
tern matching using locally consistent pars-
ing. Manuscript, Univ. of Maryland Institute for
Advanced Computer Studies (UMIACS).

SANKOFF, D. 1972. Matching sequences under dele-
tion/insertion constraints. In Proceedings of the
National Academy of Sciences of the USA, vol. 69,
4–6.

SANKOFF, D. AND KRUSKAL, J., Eds. 1983. Time Warps,
String Edits, and Macromolecules: The Theory
and Practice of Sequence Comparison. Addison-
Wesley, Reading, MA.

SANKOFF, D. AND MAINVILLE, S. 1983. Common Subse-
quences and Monotone Subsequences. Addison-
Wesley, Reading, MA, 363–365.

SCHIEBER, B. AND VISHKIN, U. 1988. On finding low-
est common ancestors: simplification and par-
allelization. SIAM J. Comput. 17, 6, 1253–
1262.

SELLERS, P. 1974. On the theory and computation of
evolutionary distances. SIAM J. Appl. Math. 26,
787–793.

SELLERS, P. 1980. The theory and computation of
evolutionary distances: pattern recognition. J.
Algor. 1, 359–373.

SHI, F. 1996. Fast approximate string matching
with q-blocks sequences. In Proceedings of the
3rd South American Workshop on String Pro-
cessing (WSP’96). Carleton Univ. Press. 257–
271.

SUNDAY, D. 1990. A very fast substring search algo-
rithm. Commun. ACM 33, 8, 132–142.

SUTINEN, E. 1998. Approximate Pattern Matching
with the q-Gram Family. Ph.D. thesis, Dept. of
Computer Science, Univ. of Helsinki, Finland.
Tech. Rep. A-1998-3.

SUTINEN, E. AND TARHIO, J. 1995. On using q-gram lo-
cations in approximate string matching. In Pro-
ceedings of the 3rd Annual European Sympo-
sium on Algorithms (ESA ’95). LNCS, vol. 979,
Springer-Verlag, Berlin, 327–340.

SUTINEN, E. AND TARHIO, J. 1996. Filtration with q-
samples in approximate string matching. In Pro-
ceedings of the 7th Annual Symposium on Com-
binatorial Pattern Matching (CPM ’96). LNCS,
vol. 1075, Springer-Verlag, Berlin, 50–61.

TAKAOKA, T. 1994. Approximate pattern matching
with samples. In Proceedings of ISAAC ’94.
LNCS, vol. 834, Springer-Verlag, Berlin, 234–
242.

TARHIO, J. AND UKKONEN, E. 1988. A greedy approxi-
mation algorithm for constructing shortest com-
mon superstrings. Theor. Comput. Sci. 57, 131–
145.

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

88 G. Navarro

TARHIO, J. AND UKKONEN, E. 1993. Approximate
Boyer–Moore string matching. SIAM J. Com-
put. 22, 2, 243–260. Preliminary version in
SWAT’90 (LNCS, vol. 447, 1990).

TICHY, W. 1984. The string-to-string correction
problem with block moves. ACM Trans. Comput.
Syst. 2, 4, 309–321.

UKKONEN, E. 1985a. Algorithms for approximate
string matching. Information and Control 64,
100–118. Preliminary version in Proceedings
of the International Conference Foundations
of Computation Theory (LNCS, vol. 158,
1983).

UKKONEN, E. 1985b. Finding approximate patterns
in strings. J. Algor. 6, 132–137.

UKKONEN, E. 1992. Approximate string matching
with q-grams and maximal matches. Theor.
Comput. Sci. 1, 191–211.

UKKONEN, E. 1993. Approximate string matching
over suffix trees. In Proceedings of the 4th
Annual Symposium on Combinatorial Pattern
Matching (CPM ’93), 228–242.

UKKONEN, E. 1995. Constructing suffix trees on-
line in linear time. Algorithmica 14, 3, 249–
260.

UKKONEN, E. AND WOOD, D. 1993. Approximate
string matching with suffix automata. Algorith-
mica 10, 353–364. Preliminary version in Rep.
A-1990-4, Dept. of Computer Science, Univ. of
Helsinki, Apr. 1990.

ULLMAN, J. 1977. A binary n-gram technique for au-
tomatic correction of substitution, deletion, in-
sertion and reversal errors in words. Comput.
J. 10, 141–147.

VINTSYUK, T. 1968. Speech discrimination by dy-
namic programming. Cybernetics 4, 52–58.

WAGNER, R. AND FISHER, M. 1974. The string to string
correction problem. J. ACM 21, 168–178.

WATERMAN, M. 1995. Introduction to Computational
Biology. Chapman and Hall, London.

WEINER, P. 1973. Linear pattern matching algo-
rithms. In Proceedings of IEEE Symposium on
Switching and Automata Theory, 1–11.

WRIGHT, A. 1994. Approximate string matching us-
ing within-word parallelism. Software Practice
Exper. 24, 4, 337–362.

WU, S. AND MANBER, U. 1992a. Agrep—a fast approx-
imate pattern-matching tool. In Proceedings of
USENIX Technical Conference. USENIX Asso-
ciation, Berkeley, CA, USA. 153–162.

WU, S. AND MANBER, U. 1992b. Fast text searching
allowing errors. Commun. ACM 35, 10, 83–91.

WU, S., MANBER, U., AND MYERS, E. 1995. A sub-
quadratic algorithm for approximate regular ex-
pression matching. J. Algor. 19, 3, 346–360.

WU, S., MANBER, U., AND MYERS, E. 1996. A sub-
quadratic algorithm for approximate limited
expression matching. Algorithmica 15, 1, 50–
67. Preliminary version as Tech. Rep. TR29-36,
Computer Science Dept., Univ. of Arizona, 1992.

YAO, A. 1979. The complexity of pattern matching
for a random string. SIAM J. Comput. 8, 368–
387.

YAP, T., FRIEDER, O., AND MARTINO, R. 1996. High Per-
formance Computational Methods for Biological
Sequence Analysis. Kluwer Academic Publish-
ers, Dordrecht.

ZOBEL, J. AND DART, P. 1996. Phonetic string match-
ing: lessons from information retrieval. In Pro-
ceedings of the 19th ACM International Confer-
ence on Information Retrieval (SIGIR ’96), 166–
172.

Received August 1999; revised March 2000; accepted May 2000

ACM Computing Surveys, Vol. 33, No. 1, March 2001.

